若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a取值范圍是
[-3,1]
[-3,1]
分析:利用圓心與直線的距離等于小于圓的半徑,然后求解a的范圍.
解答:解:圓(x-a)2+y2=2的圓心(a,0),半徑為
2
,
直線x-y+1=0與圓(x-a)2+y2=2有公共點,
|a+1|
2
2
,
所以|a+1|≤2,解得實數(shù)a取值范圍是[-3,1].
故答案為:[-3,1].
點評:本題考查直線與圓的位置關系,點到直線的距離公式的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(3)設g(x)=xlnx-x2f(x),求g(x)在區(qū)間[l,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽)若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(III)設g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的中心在原點,焦點在x軸上,長軸長為
6
,且經(jīng)過點(1,
1
2
)
.若直線x+y-1=0與橢圓交于兩點P,Q,求證:OP⊥OQ.

查看答案和解析>>

同步練習冊答案