精英家教網 > 高中數學 > 題目詳情

平面上共有6個點,且每3個點都不在一條直線上.以這6個點為頂點,問:

(1)可以連接多少條含4條線段的封閉折線?

(2)可以連接多少條含4條線段的不封閉折線?

練習冊系列答案
相關習題

科目:高中數學 來源:2011-2012學年上海市黃浦區(qū)高三上學期期終基礎學業(yè)測評理科數學試卷 題型:解答題

(本題滿分16分)本題共有2個小題,第1小題滿分6分,第2小題滿分10分.

  已知兩點、,點是直角坐標平面上的動點,若將點的橫坐標保持不變、縱坐標擴大到倍后得到點滿足

(1) 求動點所在曲線的軌跡方程;

(2)(理科)過點作斜率為的直線交曲線兩點,且滿足,又點關于原點O的對稱點為點,試問四點是否共圓,若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.

(文科)過點作斜率為的直線交曲線兩點,且滿足(O為坐標原點),試判斷點是否在曲線上,并說明理由.

 

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

已知點是直角坐標平面內的動點,點到直線的距離為,到點的距離為,且.

(1)求動點P所在曲線C的方程;

(2)直線過點F且與曲線C交于不同兩點A、B(點AB不在x軸上),分別過A、B點作直線的垂線,對應的垂足分別為,試判斷點F與以線段為直徑的圓的位置關系(指在圓內、圓上、圓外等情況);

(3)記,,(A、B、是(2)中的點),問是否存在實數,使成立.若存在,求出的值;若不存在,請說明理由.

進一步思考問題:若上述問題中直線、點、曲線C:,則使等式成立的的值仍保持不變.請給出你的判斷            (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設常數,對, 是平面上任意一點,定義運算“”:, .

(1)若,求動點的軌跡C;

(2)計算,并說明其幾何意義;

(3)在(1)中的軌跡C中,是否存在兩點,使之滿足?若存在,求出的取值范圍,并請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

已知點是直角坐標平面內的動點,點到直線的距離為,到點的距離為,且.

(1)求動點P所在曲線C的方程;

(2)直線過點F且與曲線C交于不同兩點A、B(點AB不在x軸上),分別過A、B點作直線的垂線,對應的垂足分別為,試判斷點F與以線段為直徑的圓的位置關系(指在圓內、圓上、圓外等情況);

(3)記,,(A、B、是(2)中的點),問是否存在實數,使成立.若存在,求出的值;若不存在,請說明理由.

進一步思考問題:若上述問題中直線、點、曲線C:,則使等式成立的的值仍保持不變.請給出你的判斷            (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).

查看答案和解析>>

同步練習冊答案