8.將號碼分別為1、2、3、4的四個小球放入一個袋中,這些小球僅號碼不同,其余完全相同.甲從袋中摸出一個球,號碼為a,放回后,乙從此袋再摸出一個球,其號碼為b,則使不等式a>2b-2成立的事件發(fā)生的概率等于( 。
A.$\frac{3}{8}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 基本事件總數(shù)n=4×4=16,再用列舉法求出使不等式a>2b-2成立的基本事件個數(shù),由此能求出使不等式a>2b-2成立的事件發(fā)生的概率.

解答 解:將號碼分別為1、2、3、4的四個小球放入一個袋中,這些小球僅號碼不同,其余完全相同.
甲從袋中摸出一個球,號碼為a,放回后,乙從此袋再摸出一個球,其號碼為b,
則基本事件總數(shù)n=4×4=16,
要使不等式a>2b-2成立,
則當(dāng)a=1時,b=1;
當(dāng)a=2時,b=1;
當(dāng)a=3時,b=1,2;
當(dāng)a=4時,b=1,2.
故滿足a>2b-1的基本事件共有m=6個,
∴使不等式a>2b-2成立的事件發(fā)生的概率為p=$\frac{m}{n}=\frac{6}{16}=\frac{3}{8}$.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,面積為8的平行四邊形ABCD,A為坐標(biāo)原點,B坐標(biāo)為(2,-1),C、D均在第一象限.
(I)求直線CD的方程;
(II)若|BC|=$\sqrt{13}$,求點D的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題“?x>0,$\sqrt{x}≤x-1$”的否定為?x>0,$\sqrt{x}>x-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等比數(shù)列{an}中,a1=2,a3+2是a2和a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)記bn=nan,求數(shù)列{bn}的前n項sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線y2=2px(p>0)的焦點成F,過點F且傾斜角為45°的直線l與拋物線在第一、第四象限分別交于A、B,則$\frac{|AF|}{|BF|}$等于(  )
A.3B.7+4$\sqrt{3}$C.3+2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$).
①若f(0)=1,則φ=$\frac{π}{6}$;
②若?x∈R,使f(x+2)-f(x)=4成立,則ω的最小值是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,則m,n,p,q從小到大排列順序是( 。
A.m<p<q<nB.p<m<q<nC.m<p<n<qD.p<m<n<q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)不等式(x-a)(x+a-2)<0的解集為N,若x∈N是$x∈M=[{-\frac{1}{2},2})$的必要條件,則a的取值范圍為$a≤-\frac{1}{2}或a≥\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點A(4,0),拋物線C:x2=8y的焦點為F,射線FA與拋物線和它的準(zhǔn)線分別交于點M和N,則|FM|:|MN|=1:$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案