在平面直角坐標(biāo)系xOy中,過原點(diǎn)O的直線與函數(shù)y=log8x的圖象交于A、B兩點(diǎn)(A在B的左側(cè)),分別過A、B作y軸的平行線分別與函數(shù)y=log2x的圖象交于C、D兩點(diǎn),若BC∥x軸,則四邊形ABCD的面積為
4
3
3
log23
4
3
3
log23
分析:設(shè)出A、B的坐標(biāo),求出OA、OB的斜率相等利用三點(diǎn)共線得出A、B的坐標(biāo)之間的關(guān)系.再根據(jù)BC平行x軸,B、C縱坐標(biāo)相等,推出橫坐標(biāo)的關(guān)系,結(jié)合之前得出A、B的坐標(biāo)之間的關(guān)系即可求出A的坐標(biāo),從而解出B、C、D的坐標(biāo),最后利用梯形的面積公式求解即可.
解答:解:設(shè)點(diǎn)A、B的橫坐標(biāo)分別為x1、x2由題設(shè)知,x1>1,x2>1.
則點(diǎn)A、B縱坐標(biāo)分別為log8x1、log8x2
因?yàn)锳、B在過點(diǎn)O的直線上,所以
log8x1
x1
=
log8x2
x2
,
點(diǎn)C、D坐標(biāo)分別為(x1,log2x1),(x2,log2x2).
由于BC平行于x軸知
log2x1=log8x2,
即得log2x1=
1
3
log2x2,
∴x2=x13
代入x2log8x1=x1log8x2得x13log8x1=3x1log8x1
由于x1>1知log8x1≠0,
∴x13=3x1
考慮x1>1解得x1=
3

于是點(diǎn)A的坐標(biāo)為(
3
,log8
3
)即A(
3
,
1
6
log23)
∴B(3
3
1
2
log23),C(
3
,
1
2
log23),D(3
3
3
2
log23).
∴梯形ABCD的面積為S=
1
2
(AC+BD)×BC=
1
2
1
3
log23+log23)×2
3
=
4
3
3
log23

故答案為:
4
3
3
log23
點(diǎn)評(píng):本小題主要考查對(duì)數(shù)函數(shù)圖象、對(duì)數(shù)換底公式、對(duì)數(shù)方程、指數(shù)方程等基礎(chǔ)知識(shí),考查運(yùn)算能力和分析問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案