(本小題滿分13分)
設(shè)函數(shù),其中,且a≠0.
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)在區(qū)間[1,e]上的最小值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間。
(Ⅰ)-1(Ⅱ)當(dāng)a<0時(shí),函數(shù)區(qū)間(0,+∞)上單調(diào)遞減,當(dāng)a>0時(shí),函數(shù)在(0,a)上單調(diào)遞增,在(a,+∞)上單調(diào)遞減
【解析】
試題分析:(Ⅰ)由題意。 1分
令。 2分
當(dāng)x變化時(shí),的變化情況如表:
x |
1 |
(1,2) |
2 |
(2,e) |
e |
|
+ |
0 |
- |
|
|
-1 |
↗ |
極大值 |
↘ |
2-e |
即函數(shù)在(1,2)上單調(diào)遞增,在(2,e)上單調(diào)遞減。 4分
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013050119042853705216/SYS201305011904564276489651_DA.files/image006.png">,
所以當(dāng)x=1時(shí),在區(qū)間[1,e]上有最小值-1。 5分
(Ⅱ)函數(shù)的定義域?yàn)椋?,+∞)。 6分
求導(dǎo),得。 7分
當(dāng)a<0時(shí),
由x>0,得。
所以在區(qū)間(0,+∞)上單調(diào)遞減; 9分
當(dāng)a>0時(shí),
令=0,得x=a。 10分
當(dāng)x變化時(shí),與的變化情況如下表:
x |
(0,a) |
a |
(a,+∞) |
+ |
0 |
- |
|
↗ |
極大值 |
↘ |
即函數(shù)在(0,a)上單調(diào)遞增,在(a,+∞)上單調(diào)遞減。
綜上,當(dāng)a<0時(shí),函數(shù)區(qū)間(0,+∞)上單調(diào)遞減;
當(dāng)a>0時(shí),函數(shù)在(0,a)上單調(diào)遞增,在(a,+∞)上單調(diào)遞減。 13分
考點(diǎn):函數(shù)導(dǎo)數(shù)求極值最值單調(diào)區(qū)間
點(diǎn)評(píng):函數(shù)的最值出現(xiàn)在閉區(qū)間的端點(diǎn)處或極值點(diǎn)處,因此只需求出端點(diǎn)處函數(shù)值極值后比較大小得最值,在求單調(diào)區(qū)間時(shí)要注意函數(shù)的定義域,第二問中因?yàn)槎x域,因此要對(duì)參數(shù)a分情況討論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com