橢圓b2x2+a2y2=a2b2(a>b>0)的兩個(gè)焦點(diǎn)分別是F1、F2,等邊三角形的邊AF1、AF2與該橢圓分別相交于B、C兩點(diǎn),且2|BC|=|F1F2|,則該橢圓的離心率等于( )
A.
B.
C.
D.
【答案】分析:由△A為正三角形可得∠AF1F2=∠A=60°,則可求直線AF1,AF2的斜率,進(jìn)而可求所在的直線方程,其交點(diǎn),而AF1中點(diǎn)B在橢圓上,代入橢圓的方程,結(jié)合b2=a2-c2及0<e<1可求該橢圓的離心率.
解答:解:由△AF1F2為正三角形可得∠AF1F2=∠AF2F1=60°
則直線AF1,AF2的斜率分別為 ,-
則直線AF1,AF2所在的直線方程分別為y=,y=,
其交點(diǎn)A(0,c),由于2|BC|=|F1F2|,得BC是三角形的中位線,得B是AF1的中點(diǎn),
從而AF1中點(diǎn)B( ,)在橢圓上,代入橢圓的方程可得
整理可得,c2(a2-c2)+3c2a2=4a2(a2-c2
∴4a4-8a2c2+c4=0
兩邊同時(shí)除以a4可得,e4-8e2+4=0
∵0<e<1
,(舍)

故選C.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),直角三角形中的邊角關(guān)系的應(yīng)用,考查計(jì)算能力和數(shù)形結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[文]已知圓(x-2)2+(y-1)2=
20
3
,橢圓b2x2+a2y2=a2b2(a>b>0)的離心率為
2
2
,若圓與橢圓相交于A、B,且線段AB是圓的直徑,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓b2x2+a2y2=a2b2(a>b>0)與圓x2+y2=4c2只有兩個(gè)公共點(diǎn),其中c是該橢圓的半焦距,橢圓上的點(diǎn)到直線x-y-c=0距離的最大值為2
2

(1)求橢圓的離心率;
(2)若a>2c時(shí),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•沅江市模擬)橢圓b2x2+a2y2=a2b2(a>b>0)的兩個(gè)焦點(diǎn)分別是F1、F2,等邊三角形的邊AF1、AF2與該橢圓分別相交于B、C兩點(diǎn),且2|BC|=|F1F2|,則該橢圓的離心率等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓b2x2+a2y2=a2b2(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,上頂點(diǎn)為B,且離心率為,求∠ABF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓b2x2+a2y2=a2b2(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,上頂點(diǎn)為B,且離心率為,求∠ABF.

查看答案和解析>>

同步練習(xí)冊(cè)答案