精英家教網 > 高中數學 > 題目詳情

 四棱錐中,底面ABCD為平行四邊形,側面底面ABCD,已知,,.

(Ⅰ)證明:;  

(Ⅱ) 求直線SD與平面SAB所成角的大小.

 

 

 

 

 

 

 

 

 

 

 

【答案】

 (Ⅰ)作,垂足為,連結,由側面底面,得平面

因為,所以.  

為等腰直角三角形,

如圖,以為坐標原點,軸正向,建立直角坐標系,

,,,,

,所以

(Ⅱ)取中點,, 

連結,取中點,連結,.  

,

,與平面內兩條相交直線,垂直.

所以平面的夾角記為,與平面所成的角記為,則互余.

,.  

,, 

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠B=90°,D為棱BB1上一點,且平面DA1C⊥平面AA1C1C.
(Ⅰ)求證:D點為棱BB1的中點;
(Ⅱ)判斷四棱錐A1-B1C1CD和C-A1ABD的體積是否相等,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐P-ABC中,底面ABC為等腰直角三角形,∠ACB=90°,棱PA垂直底面ABC,PA=AB=4,BD=
3
4
BP,CE=
3
4
BC,F是AB的中點.
(1)證明DE∥平面ABC;
(2)證明:BC⊥平面PAC;
(3)求四棱錐C-AFDP的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠B=90°,D為棱BB1上一點,且平面DA1C⊥平面AA1C1C.
(Ⅰ)求證:D點為棱BB1的中點;
(Ⅱ)判斷四棱錐A1-B1C1CD和C-A1ABD的體積是否相等,并證明.

查看答案和解析>>

科目:高中數學 來源:2012年高考數學預測試卷1(文科)(解析版) 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠B=90°,D為棱BB1上一點,且平面DA1C⊥平面AA1C1C.
(Ⅰ)求證:D點為棱BB1的中點;
(Ⅱ)判斷四棱錐A1-B1C1CD和C-A1ABD的體積是否相等,并證明.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年遼寧省沈陽市東北育才學校高三(下)5月月考數學試卷(文科)(解析版) 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠B=90°,D為棱BB1上一點,且平面DA1C⊥平面AA1C1C.
(Ⅰ)求證:D點為棱BB1的中點;
(Ⅱ)判斷四棱錐A1-B1C1CD和C-A1ABD的體積是否相等,并證明.

查看答案和解析>>

同步練習冊答案