..中,,D為垂足,BD為AB在BC上的射影,CD為AC在BC上的射影,則有AB2+AC2=BC2,AC2=CD·BC成立。直角四面體P—ABC(即)中,O為P在的面積分別為的面積記為S。類比直角三角形中的射影結(jié)論,在直角四面體P—ABC中可得到正確結(jié)論      。(寫(xiě)出一個(gè)正確結(jié)論即可)

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫(xiě)在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過(guò)C作圓的切線l,過(guò)A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,求線段AE的長(zhǎng).
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對(duì)應(yīng)的一個(gè)特征向量α1=
1
1
,特征值λ2=-1及其對(duì)應(yīng)的一個(gè)特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系(兩種坐標(biāo)系中取相同的單位長(zhǎng)度),已知點(diǎn)A的直角坐標(biāo)為(-2,6),點(diǎn)B的極坐標(biāo)為(4,
π
2
)
,直線l過(guò)點(diǎn)A且傾斜角為
π
4
,圓C以點(diǎn)B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
D.(選修4-5:不等式選講)
設(shè)a,b,c,d都是正數(shù),且x=
a2+b2
,y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年?yáng)|北師大附中、哈師大附中、遼寧實(shí)驗(yàn)中學(xué)高三第二次模擬考試數(shù)學(xué)理卷 題型:填空題

中,,D為垂足,BD為AB在BC上的射影,CD為AC在BC上的射影,則有AB2+AC2=BC2,AC2=CD·BC成立。直角四面體P—ABC(即)中,O為P在的面積分別為的面積記為S。類比直角三角形中的射影結(jié)論,在直角四面體P—ABC中可得到正確結(jié)論      。(寫(xiě)出一個(gè)正確結(jié)論即可)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中,,D為垂足,BD為AB在BC上的射影,CD為AC在BC上的射影,則有AB2+AC2=BC2,AC2=CD·BC成立。直角四面體P—ABC(即)中,O為P在的面積分別為的面積記為S。類比直角三角形中的射影結(jié)論,在直角四面體P—ABC中可得到正確結(jié)論      。(寫(xiě)出一個(gè)正確結(jié)論即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆東北師大附中、哈師大附中、遼寧實(shí)驗(yàn)中學(xué)高三第二次模擬考試數(shù)學(xué)理卷 題型:填空題

中,,D為垂足,BD為AB在BC上的射影,CD為AC在BC上的射影,則有AB2+AC2=BC2,AC2=CD·BC成立。直角四面體P—ABC(即)中,O為P在的面積分別為的面積記為S。類比直角三角形中的射影結(jié)論,在直角四面體P—ABC中可得到正確結(jié)論     。(寫(xiě)出一個(gè)正確結(jié)論即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案