設項數(shù)均為k(k≥2,k∈N*)的數(shù)列{an}、{bn}、{cn}前n項的和分別為Sn、Tn、Un.已知:an-bn=2n  (1≤n≤k, n∈N*),且集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求數(shù)列{cn}的通項公式;
(2)若k=4,求S4和T4的值,并寫出兩對符合題意的數(shù)列{an}、{bn};
(3)對于固定的k,求證:符合條件的數(shù)列對({an},{bn})有偶數(shù)對.
分析:(1)當n=1時,c1=U1=4;當n≥2時,易求cn=Un-Un-1=2+2n-1,從而可得數(shù)列{cn}的通項公式;
(2)依題意,可求得S4-T4=20,S4+T4=72,從而可求得S4和T4的值,繼而可寫出兩對符合題意的數(shù)列{an}、{bn};
(3)令dn=4k+2-bn,en=4k+2-an(1≤n≤k,n∈N*),可求得dn-en=(4k+2-bn)-(4k+2-an)=an-bn=2n,結合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k}⇒數(shù)列對({an},{bn})與({dn},{en})成對出現(xiàn),從而可證得結論.
解答:解:(1)n=1時,c1=U1=4,
當n≥2時,cn=Un-Un-1=2n+2n-2(n-1)-2n-1=2+2n-1
c1=4不適合該式,
故cn=
4,  n=1
2+2n-1,  2≤n≤k
,
(2)S4-T4=(a1+a2+a3+a4)-(b1+b2+b3+b4
=(a1-b1)+(a2-b2)+(a3-b3)+(a4-b4
=2+4+6+8=20,
又S4+T4=(a1+a2+a3+a4)+(b1+b2+b3+b4
=2+4+6+8+10+12+14+16
=72,
∴S4=46,T4=26;            
數(shù)列{an}、{bn}可以為:
①16,10,8,12;14,6,2,4 ②14,6,10,16;12,2,4,8
③6,16,14,10;4,12,8,2 ④4,14,12,16;2,10,6,8
⑤4,12,16,14;2,8,10,6 ⑥16,8,12,10;14,4,6,2;    
(3)令dn=4k+2-bn,en=4k+2-an(1≤n≤k,n∈N*),
dn-en=(4k+2-bn)-(4k+2-an)=an-bn=2n;
又{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k},
得{4k+2-a1,4k+2-a2,…,4k+2-ak,4k+2-b1,4k+2-b2,…,4k+2-bk}
={2,4,6,…,4k};
∴數(shù)列對({an},{bn})與({dn},{en})成對出現(xiàn). 
假設數(shù)列{an}與{dn}相同,則由d2=4k+2-b2=a2及a2-b2=4,得a2=2k+3,b2=2k-1,均為奇數(shù),矛盾!
故符合條件的數(shù)列對({an},{bn})有偶數(shù)對.
點評:本題考查數(shù)列的求和,著重考查構造函數(shù)思想,考查抽象思維與創(chuàng)新思維的綜合運用,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設項數(shù)均為k(k≥2,k∈N*)的數(shù)列{an}、{bn}、{cn}前n項的和分別為Sn、Tn、Un.已知集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求數(shù)列{cn}的通項公式;
(2)若Sn-Tn=2n+2n(1≤n≤k,n∈N*),試研究k=4和k≥6時是否存在符合條件的數(shù)列對({an},{bn}),并說明理由;
(3)若an-bn=2n  (1≤n≤k, n∈N*),對于固定的k,求證:符合條件的數(shù)列對({an},{bn})有偶數(shù)對.

查看答案和解析>>

同步練習冊答案