用M表示平面,表示一條直線,則M內(nèi)至少有一直線與                     (   )

A.平行;           B.相交;            C.異面;           D.垂直。

 

【答案】

D

【解析】

試題分析:若相交,則則M內(nèi)沒(méi)有直線與,故A錯(cuò)誤;若,則M內(nèi)沒(méi)有直線與相交,故B錯(cuò)誤;若,則M內(nèi)沒(méi)有直線與異面,故C錯(cuò)誤;故選D。

考點(diǎn):直線、平面之間的位置關(guān)系

點(diǎn)評(píng):直線與直線之間的位置關(guān)系有三種:平行、異面和相交。解決本題可用到排除法。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過(guò)點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點(diǎn),其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個(gè)交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè).
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、D(O為坐標(biāo)原點(diǎn))依次均勻分布在x軸上,問(wèn)直線MF1與直線DF2的交點(diǎn)是否在一條定直線上?若是,請(qǐng)求出這條定直線的方程;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“如果直線l上有兩點(diǎn)M,P在平面α內(nèi),則這條直線在平面內(nèi)”這一句用符號(hào)表示為:若
M∈l,P∈l,M∈α,P∈α
M∈l,P∈l,M∈α,P∈α
,則
l?α
l?α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廈門模擬)某公園內(nèi)有一橢圓形景觀水池,經(jīng)測(cè)量知,橢圓長(zhǎng)軸長(zhǎng)為20米,短軸長(zhǎng)為16米.現(xiàn)以橢圓長(zhǎng)軸所在直線為x軸,短軸所在直線為y軸,建立平面直角坐標(biāo)系,如圖所示.
(I)為增加景觀效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請(qǐng)指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程;
(Ⅱ)為增強(qiáng)水池的觀賞性,擬劃出一個(gè)以橢圓的長(zhǎng)軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置.請(qǐng)確定點(diǎn)肘的位置,使此三角形區(qū)域面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•上海模擬)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分6分
過(guò)直角坐標(biāo)平面xOy中的拋物線y2?2px (p>0)的焦點(diǎn)F作一條傾斜角為
π4
的直線與拋物線相交于A、B兩點(diǎn).
(1)用p表示A、B之間的距離并寫出以AB為直徑的圓C方程;
(2)若圓C于y軸交于M、N兩點(diǎn),寫出M、N的坐標(biāo),證明∠MFN的大小是與p無(wú)關(guān)的定值,并求出這個(gè)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案