已知直線l1:ax-3y+2=0和l2:x+(2-a)y+a-1=0.
(Ⅰ)若l1⊥l2,求實數(shù)a;
(Ⅱ)若l1∥l2,求實數(shù)a.
分析:(I)對斜率和a分類討論,利用直線相互垂直與斜率的關(guān)系即可得出;
(II)利用直線平行于斜率的關(guān)系即可得出.
解答:解:(I)當(dāng)a=0或a=2時,直線l1和l2不垂直.
當(dāng)a≠0或a≠2時,直線l1:ax-3y+2=0的斜率:kl1=
a
3

l2:x+(2-a)y+a-1=0的斜率:kl2=
-1
2-a
=
1
a-2

∵l1⊥l2,∴kl1kl2=-1,∴
a
3
1
a-2
=-1
,解得a=
3
2

(II)∵l1∥l2,∴kl1=kl2,∴
a
3
=
1
a-2
,化為a2-2a-3=0,
解得a=3,或a=-1.
其中當(dāng)a=-1時,兩條直線重合.
故a=3.
點評:本題考查了直線平行及垂直與斜率的關(guān)系、分類討論,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax+2y+6=0和直線l2:x+(a-1)y+a2-1=0,l1⊥l2,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論:
①若命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧?q”是假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”.
④任意的銳角三角形ABC中,有sinA>cosB成立;
⑤直線x=
π
12
是函數(shù)y=2sin(2x-
π
6
)
的圖象的一條對稱軸
其中正確結(jié)論的序號為
 
.(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax+3y+1=0,l2:x+(a-2)y+a=0.當(dāng)l1∥l2時,實數(shù)a的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:ax-y+1=0與l2:x+ay+1=0(a∈R),給出如下結(jié)論:
①不論a為何值時,l1與l2都互相垂直;
②不論a為何值時,l1與l2都關(guān)于直線x+y=0對稱;
③當(dāng)a變化時,l1與l2分別經(jīng)過定點A(0,1)和B(-1,0);
④當(dāng)a變化時,l1與l2的交點軌跡是以AB為直徑的圓(除去原點).
其中正確的結(jié)論有
①③④
①③④
.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•馬鞍山模擬)給出下列四個結(jié)論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
ab
=-2
;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時,f'(x)>0,g'(x)>0,則x<0時,f'(x)>g'(x).
其中正確結(jié)論的序號是
①④
①④
(填上所有正確結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案