(本小題滿分14分)已知函數(shù)=,.
(1)求函數(shù)在區(qū)間上的值域;
(2)是否存在實(shí)數(shù),對(duì)任意給定的,在區(qū)間上都存在兩個(gè)不同的,使得成立.若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(3)給出如下定義:對(duì)于函數(shù)圖象上任意不同的兩點(diǎn),如果對(duì)于函數(shù)圖象上的點(diǎn)(其中總能使得成立,則稱函數(shù)具備性質(zhì)“”,試判斷函數(shù)是不是具備性質(zhì)“”,并說(shuō)明理由.
(1)值域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823234901174391.png" style="vertical-align:middle;" /> .(2)滿足條件的不存在. (3)函數(shù)不具備性質(zhì)“”.
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
(1)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823234901455920.png" style="vertical-align:middle;" />,然后分析導(dǎo)數(shù)的正負(fù),然后判定單調(diào)性得到值域。
(2)令,則由(1)可得,原問(wèn)題等價(jià)于:對(duì)任意的上總有兩個(gè)不同的實(shí)根,故不可能是單調(diào)函數(shù),對(duì)于參數(shù)a討論得到結(jié)論。
(3)結(jié)合導(dǎo)數(shù)的幾何意義得到結(jié)論。
(1),當(dāng)時(shí),時(shí), 
在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,
 的值域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823234901174391.png" style="vertical-align:middle;" /> .          ………………………….3分
(2)令,則由(1)可得,原問(wèn)題等價(jià)于:對(duì)任意的上總有兩個(gè)不同的實(shí)根,故不可能是單調(diào)函數(shù)  ……5分
   
當(dāng)時(shí), 在區(qū)間上遞減,不合題意 ;
當(dāng)時(shí), ,在區(qū)間上單調(diào)遞增,不合題意;
當(dāng)時(shí), ,在區(qū)間上單調(diào)遞減,不合題意;
當(dāng)時(shí), 在區(qū)間上單調(diào)遞減; 在區(qū)間上單遞增,由上可得,此時(shí)必有的最小值小于等于0且的最大值大于等于1, 而由可得,則.
綜上,滿足條件的不存在.……………………………………………8分
(3)設(shè)函數(shù)具備性質(zhì)“”,即在點(diǎn)處地切線斜率等于,不妨設(shè),則,而在點(diǎn)處的切線斜率為,故有……..10分
,令,則上式化為,
,則由可得上單調(diào)遞增,故,即方程無(wú)解,所以函數(shù)不具備性質(zhì)“”.……..14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)mR,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題14分)設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)已知,若函數(shù)的圖象總在直線的下方,求的取值范圍;
(Ⅲ)記為函數(shù)的導(dǎo)函數(shù).若,試問(wèn):在區(qū)間上是否存在)個(gè)正數(shù),使得成立?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) 
(1)若上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若的極值點(diǎn),求上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分) 已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),判斷方程實(shí)根個(gè)數(shù).
(3)若時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù)在(0,1)上是增函數(shù).(1)求的取值范圍;
(2)設(shè)),試求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分) 已知函數(shù)處取得極小值.
(1)求m的值。
(2)若上是增函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè).如果對(duì)任意,,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案