直線L1,L2都過點(1,-2)且互相垂直,若拋物線y=ax2與兩直線中至少一條相交,求a的取值范圍.
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由題意直線l1,l2的斜率分別設(shè)為k1,k2,過點P(1,-2)的直線設(shè)為y=k(x-1)-2,由由y=k(x-1)-2與拋物線y=ax2聯(lián)立,得ax2-kx+k+2=0,由直線l1、l2都過點P(1,-2)且都與拋物線相切,知a≠0,△=k2-4ak-8a≥0,再由l1⊥l2,能求出a的取值范圍.
解答: 解:由題意直線L1,L2的斜率,分別設(shè)為k1,k2,
過點P(1,-2)的直線設(shè)為y=k(x-1)-2,
由y=k(x-1)-2與拋物線y=ax2聯(lián)立,得ax2-kx+k+2=0,
∵拋物線y=ax2與兩直線中至少一條相交,
∴a≠0,△=k2-4ak-8a≥0
∵l1⊥l2,
∴k1k2=
k+2
a
=-1,
∴k=-a-2,
∴(-a-2)2-4(-a-2)a-8a≥0,
∴5a2+4a+4≥0,恒成立
斜率不存在時,同樣成立.
∴a≠0.
點評:通過幾何量的轉(zhuǎn)化考查用待定系數(shù)法求曲線方程的能力,通過直線與圓錐曲線的位置關(guān)系處理,考查學(xué)生的運算能力.通過向量與幾何問題的綜合,考查學(xué)生分析轉(zhuǎn)化問題的能力,探究研究問題的能力,并體現(xiàn)了合理消元,設(shè)而不解的代數(shù)變形的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點F(
3
,0),雙曲線C上一點P到F的最短距離為
3
-
2

(1)求雙曲線的標準方程和漸近線方程;
(2)已知點M(0,1),設(shè)P是雙曲線C上的點,Q是點P關(guān)于原點的對稱點:設(shè)λ=
MP
MQ
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的程序框圖,變量a每次賦值后的結(jié)果依次記作:a1、a2、a3…an….如a1=1,a2=3….
(Ⅰ)寫a3、a4、a5;
(Ⅱ)猜想出數(shù)列{an}的一個通項公式;
(Ⅲ)寫出運行該程序結(jié)束輸出的a值.(寫出過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=
3
5
,2an+1an+an+1=3an,n∈N.
(1)求證:數(shù)列{
1
an
-1}為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)m,s,t,使m,s,t成等差數(shù)列,且am-1,as-1,at-1成等比數(shù)列?如果存在,求出所有符合條件的m,s,t,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC內(nèi)角A,B,C所對邊長分別為a,b,c,面積S=
3
,且
AB
AC
=2.
(Ⅰ)求角A;
(Ⅱ)若c=1+b,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個盒中有8件產(chǎn)品中,其中2件不合格品.從這8件產(chǎn)品中抽取2件,試求:
(Ⅰ)若采用無放回抽取,求取到的不合格品數(shù)X的分布列;
(Ⅱ)若采用有放回抽取,求至少取到1件不合格品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,且經(jīng)過點(1,
3
2
).
(1)求橢圓E的方程;
(2)O為坐標原點,直線y=kx+m與橢圓E相交于不同的兩點A、B,若橢圓E上存在點C,使得O為△ABC的重心,試探究△ABC的面積是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系xOy中,已知動點P(x,y)(y≤0)到點F(0,-2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(Ⅰ)求點P的軌跡E的方程;
(Ⅱ)若直線l斜率為1且過點(1,0),其與軌跡E交于點M、N,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把正整數(shù)按一定的規(guī)則排成了如圖所示的三角形數(shù)表.
設(shè)aij(i,j∈N+)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)第j個數(shù),如a52=11,則a75=
 

查看答案和解析>>

同步練習(xí)冊答案