設(shè)等比數(shù)列{an} 的公比q=
1
2
,前n項和為Sn,則
S4
a4
=( 。
A、14
B、15
C、
15
8
D、
7
3
分析:先通過等比數(shù)列的求和公式,表示出S4,得知a4=a1q3,進而把a1和q代入
S4
a4
約分化簡可得到答案.
解答:解:對于 s4=
a1(1-q4)
1-q
,a4=a1q3
,
s4
a4
=
1-q4
q3(1-q)
=15

故選B.
點評:本題主要考查了等比數(shù)列中通項公式和求和公式的應(yīng)用.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}(n∈N)的公比q=-
1
2
,且
lim
n→∞
(a1+a3+a5+…+a2n-1)=
8
3
,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和為Sn,若S6:S3=3,則S9:S6=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的各項均為正數(shù),其前n項和為Sn.若a1=1,a3=4,Sk=63,則k=
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}中,前n項和為Sn,已知S3=8,S6=7,則a6+a7+a8=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)設(shè)等比數(shù)列{an}的首項a1=256,前n項和為Sn,且Sn,Sn+2,Sn+1成等差數(shù)列.
(Ⅰ)求{an}的公比q;
(Ⅱ)用Πn表示{an}的前n項之積,即Πn=a1•a2…an,試比較Π7、Π8、Π9的大。

查看答案和解析>>

同步練習(xí)冊答案