n2(n≥4)個(gè)正數(shù)排成行列的數(shù)表:a11、a12 、a13、…a1n,a21、a22、a23…a2n…an1、an2、an3…ann,其中,每一行數(shù)成等差數(shù)列,每一列數(shù)成等比數(shù)列,并且各列的公比都相等.已知=    ;ann=   
【答案】分析:因?yàn)槊恳恍袛?shù)成等差數(shù)列,每一列數(shù)成等比數(shù)列,并且各列的公比都相等.所以先根據(jù),求出等差數(shù)列的公差與等比數(shù)列的公比,再根據(jù),求出a21,ann
解答:解:∵a11、a12 、a13、…a1n成等差數(shù)列,且a12=1,a14=2
∴d==,a11=a12-=,a13=a12+=,a1n=+(n-1)×=
∵a13,a23,a33,…,an3成等比數(shù)列,且a13=,,∴q=
∵a11,a21,a31,…,an1成等比數(shù)列,公比為,∴a21=a11q=×=
∵a1n,a2n,a3n,…,ann成等比數(shù)列,公比為,∴ann=a1nqn-1==
故答案為
點(diǎn)評(píng):本題主要考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,n2(n≥4)個(gè)正數(shù)排成n行n列方陣:符號(hào)aij(1≤i,j≤n)表示位于第i行第j列的正數(shù).已知每一行的數(shù)成等差數(shù)列,每一列的數(shù)成等比數(shù)列,且各列數(shù)的公比都等于q.若a11=
1
2
,a24=1,a32=
1
4
,則q=
 
,aij=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

n2(n≥4)個(gè)正數(shù)排成n行n列:
a11 a12 a13 a14…a1n
a21 a22 a23 a24…a2n
a31 a32 a33 a34…a3n

an1 an2 an3 an4…ann
其中每一行的數(shù)由左至右成等差數(shù)列,每一列的數(shù)由上至下成等比數(shù)列,并且所有公比相等,已知a24=1,a42=
1
8
,a43=
3
16
,則a11+a22+…+ann=
2-(n+2)•
1
2n
2-(n+2)•
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)n2(n≥4)個(gè)正數(shù)排成n行n列:其中每一行的數(shù)由左至右成等差數(shù)列,每一列的數(shù)由上至下成等比數(shù)列,并且所有公比相等,已知a24=1,a42=
1
8
,a43=
3
16
,試求a11+a22+…+ann的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

n2(n≥4)個(gè)正數(shù)排成如右表所示的n行n列:
a11,a12,a13,…,a1n
a21,a22,a23,…,a2n
…,…,…,…
an1,an2,an3,…,ann
,其中第一行從左到右成等差數(shù)列,每一列從上到下成等比數(shù)列,且公比均相等.若已知a42=
1
4
,a43=
3
8
,a24=2
,則a11+a22+a33+…+ann=
4-
4+2n
2n
4-
4+2n
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•洛陽(yáng)一模)如圖,n2(n≥4)個(gè)正數(shù)排成n×n方陣,aij(1≤i,j≤n)表示位于第i行第j列的正數(shù).已知每一行的數(shù)成等差數(shù)列,每一列的數(shù)成等比數(shù)列,且每一列數(shù)的公比都等于q.若a11=1,a23=1,a32=
3
8
,則a44=
5
16
5
16

查看答案和解析>>

同步練習(xí)冊(cè)答案