動點(diǎn)P到兩個定點(diǎn)F1(0,-4)、F2(0,4)的距離之和為10,則動點(diǎn)P的軌跡方程是

[  ]
A.

=1

B.

=1

C.

=1

D.

=1

答案:B
解析:

由焦點(diǎn)坐標(biāo)確定方程的形式,排除A、C,再由2a=10知a2=25.故選B.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知動點(diǎn)P的軌跡為曲線C,且動點(diǎn)P到兩個定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離|
PF1
|,|
PF2
|
的等差中項(xiàng)為
2

(1)求曲線C的方程;
(2)直線l過圓x2+y2+4y=0的圓心Q與曲線C交于M,N兩點(diǎn),且
ON
OM
=0(O
為坐標(biāo)原點(diǎn)),求直線l的方程;
(3)設(shè)點(diǎn)A(1,
1
2
)
,點(diǎn)P為曲線C上任意一點(diǎn),求|
PA
|+
2
|
PF2
|
的最小值,并求取得最小值時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點(diǎn)P到兩個定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之和為2
3
λ(λ≥1),則點(diǎn)P軌跡的離心率的取值范圍為( 。
A、[
3
3
,1)
B、(
3
3
,
3
2
]
C、(0,
3
3
]
D、(
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若動點(diǎn)P到兩個定點(diǎn)F1(-1,0)、F2(1,0)的距離之差的絕對值為定值a(0≤a≤2),試求動點(diǎn)P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•廣東模擬)已知動點(diǎn)P的軌跡為曲線C,且動點(diǎn)P到兩個定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離|
PF1
|,|
PF2
|
的等差中項(xiàng)為
2

(1)求曲線C的方程;
(2)直線l過圓x2+y2+4y=0的圓心Q與曲線C交于M,N兩點(diǎn),且
ON
OM
=0
(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東模擬 題型:解答題

已知動點(diǎn)P的軌跡為曲線C,且動點(diǎn)P到兩個定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離|
PF1
|,|
PF2
|
的等差中項(xiàng)為
2

(1)求曲線C的方程;
(2)直線l過圓x2+y2+4y=0的圓心Q與曲線C交于M,N兩點(diǎn),且
ON
OM
=0(O
為坐標(biāo)原點(diǎn)),求直線l的方程;
(3)設(shè)點(diǎn)A(1,
1
2
)
,點(diǎn)P為曲線C上任意一點(diǎn),求|
PA
|+
2
|
PF2
|
的最小值,并求取得最小值時點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案