如圖甲,四邊形ABCD中,E是BC的中點(diǎn),DB=2,DC=1,BC=,AB=AD=.將(圖甲)沿直線BD折起,使二面角A-BD-C為60°(如圖乙).
(Ⅰ)求證:AE⊥平面BDC;
(Ⅱ)求點(diǎn)B到平面ACD的距離.

【答案】分析:(1)取BD中點(diǎn)M,連接AM,ME.先證明AM⊥BD,再證明BD⊥平面AEM,可得BD⊥AE,證明AE⊥ME,即可證明AE⊥平面BDC;
(2)建立空間直角坐標(biāo)系,求得平面ACD的法向量,利用向量的距離公式,即可求得結(jié)論.
解答:(Ⅰ)證明:如圖,取BD中點(diǎn)M,連接AM,ME.

∵AB=AD=,∴AM⊥BD,
∵DB=2,DC=1,BC=,∴DB2+DC2=BC2,∴△BCD是以BC為斜邊的直角三角形,BD⊥DC,
∵E是BC的中點(diǎn),∴ME為△BCD的中位線,∴ME∥,
∴ME⊥BD,ME=,…(2分)
∴∠AME是二面角A-BD-C的平面角,∴∠AME=60°.
∵AM⊥BD,ME⊥BD且AM、ME是平面AME內(nèi)兩條相交于點(diǎn)M的直線,∴BD⊥平面AEM,
∵AE?平面AEM,∴BD⊥AE.…(4分)
,DB=2,∴△ABD為等腰直角三角形,∴,
在△AME中,由余弦定理得:,
∴AE2+ME2=1=AM2,∴AE⊥ME,
∵BD∩ME=M,BD?平面BDC,ME?平面BDC,∴AE⊥平面BDC.…(6分)
(Ⅱ)解:如圖,以M為原點(diǎn),MB所在直線為x軸,ME所在直線為y軸,平行于EA的直線為z軸,建立空間直角坐標(biāo)系,則由(Ⅰ)及已知條件可知B(1,0,0),,,D(-1,0,0),C(-1,1,0)
,…(7分)

,
設(shè)平面ACD的法向量為=(x,y,z),

,則z=-2,∴,…(10分)
記點(diǎn)B到平面ACD的距離為d,則=.…(12分)
點(diǎn)評(píng):本題考查直線和平面垂直的證明,考查求點(diǎn)到平面的距離,考查向量知識(shí)的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(1)求證:DC⊥平面ABC;
(2)設(shè)CD=a,求三棱錐A-BFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)精英家教網(wǎng)如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(1)求證:DC⊥平面ABC;
(2)求BF與平面ABC所成角的正弦;
(3)求二面角B-EF-A的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90°,點(diǎn)D是棱B1C1的中點(diǎn).
(Ⅰ)求證:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.
(文科)如圖甲,精英家教網(wǎng)在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E、F分別為棱AC、AD的中點(diǎn).
(Ⅰ)求證:DC⊥平面ABC;
(Ⅱ)設(shè)CD=a,求三棱錐A-BFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E,F(xiàn)分別為棱AC,AD的中點(diǎn).

(1)求證:DC⊥平面ABC.
(2)設(shè)CD=a,求三棱錐A-BFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖甲,在平面四邊形ABCD中,已知∠A=45°,∠C=90°,AB=BD=2CD,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD⊥平面BDC(如圖乙),設(shè)點(diǎn)E為棱AD的中點(diǎn).
(1)求證:DC⊥平面ABC;
(2)求BE與平面ABC所成角的正弦值大。

查看答案和解析>>

同步練習(xí)冊(cè)答案