【題目】已知橢圓的左、右兩個(gè)焦點(diǎn)分別為,離心率,短軸長(zhǎng)為2.

(1)求橢圓的方程;

(2)點(diǎn)為橢圓上的一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),的延長(zhǎng)線與橢圓交于點(diǎn), 的延長(zhǎng)線與橢圓交于點(diǎn),求面積的最大值.

【答案】(1)橢圓的標(biāo)準(zhǔn)方程為 (2)面積的最大值為

【解析】試題分析:(1) 由題意得,再由, 標(biāo)準(zhǔn)方程為;(2)①當(dāng)的斜率不存在時(shí),不妨取

; ②當(dāng)的斜率存在時(shí),設(shè)的方程為,聯(lián)立方程組

,又直線的距離 點(diǎn)到直線的距離為 面積的最大值為.

試題解析:(1) 由題意得,解得,

,∴,

故橢圓的標(biāo)準(zhǔn)方程為

(2)①當(dāng)直線的斜率不存在時(shí),不妨取

;

②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為

聯(lián)立方程組,

化簡(jiǎn)得,

設(shè)

點(diǎn)到直線的距離

因?yàn)?/span>是線段的中點(diǎn),所以點(diǎn)到直線的距離為,

綜上, 面積的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線方程為x2=2py(p>0),其焦點(diǎn)為F,點(diǎn)O為坐標(biāo)原點(diǎn),過焦點(diǎn)F作斜率為k(k≠0)的直線與拋物線交于A,B兩點(diǎn),過A,B兩點(diǎn)分別作拋物線的兩條切線,設(shè)兩條切線交于點(diǎn)M.
(1)求
(2)設(shè)直線MF與拋物線交于C,D兩點(diǎn),且四邊形ACBD的面積為 ,求直線AB的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點(diǎn), .

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為原點(diǎn), 為橢圓上一點(diǎn), 的中點(diǎn)為,直線與直線交于點(diǎn),過,交直線于點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若P兩條異面直線l,m外的任意一點(diǎn),則(
A.過點(diǎn)P有且僅有一條直線與l,m都平行
B.過點(diǎn)P有且僅有一條直線與l,m都垂直
C.過點(diǎn)P有且僅有一條直線與l,m都相交
D.過點(diǎn)P有且僅有一條直線與l,m都異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間四邊形ABCD,E、H分別是AB、AD的中點(diǎn),F(xiàn)、G分別是邊BC、DC的三等分點(diǎn)(如圖),
求證:
(1)對(duì)角線AC、BD是異面直線;
(2)直線EF和HG必交于一點(diǎn),且交點(diǎn)在AC上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=(  )
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x﹣2<0},B={x|﹣1<x<1},求:
(1)A∩B并說明集合A和集合B的關(guān)系,
(2)AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 )的離心率為,其左焦點(diǎn)到點(diǎn)的距離為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若直線 與橢圓相交于、兩點(diǎn)(、不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn),求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)討論的單調(diào)性;

(2)若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案