【題目】設(shè)數(shù)列{an} 滿(mǎn)足a1=a,=can+1﹣c(n∈N*),其中a、c為實(shí)數(shù),且c≠0.
(1)求數(shù)列{an} 的通項(xiàng)公式;
(2)設(shè)a=,c=,bn=n(1﹣an)(n∈N*),求數(shù)列 {bn}的前n項(xiàng)和Sn.
【答案】(1) ;(2)
【解析】
(1)由條件得an+1﹣1=c(an﹣1),討論a,當(dāng)a1=a≠1時(shí),{an﹣1}是首項(xiàng)為a﹣1,公比為c的等比數(shù)列,求出通項(xiàng)公式后驗(yàn)證a=1時(shí)成立;
(2)把數(shù)列{an} 的通項(xiàng)公式代入bn=n(a﹣an),然后利用錯(cuò)位相減法求數(shù)列 {bn}的前n項(xiàng)和Sn;
(1)解:∵an+1=can+1﹣c,∴an+1﹣1=c(an﹣1)
∴當(dāng)a1=a≠1時(shí),{an﹣1}是首項(xiàng)為a﹣1,公比為c的等比數(shù)列,
∴,即.當(dāng)a=1時(shí),an=1仍滿(mǎn)足上式.
∴數(shù)列{an} 的通項(xiàng)公式為;
(2)由(1)得,當(dāng)a=,c=時(shí),bn=n(1﹣an)=n{1﹣[1﹣]}=n
∴
兩式作差得
=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).
…
…
…
……
(1)求第2行和第3行的通項(xiàng)公式和;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于的表達(dá)式;
(3)若,,試求一個(gè)等比數(shù)列,使得,且對(duì)于任意的,均存在實(shí)數(shù),當(dāng)時(shí),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確命題的序號(hào)是( 。
①函數(shù)f(x)在定義域R內(nèi)可導(dǎo),“f′(1)=0”是“函數(shù)f(x)在x=1處取極值”的充分不必要條件;
②函數(shù)f(x)=x3ax在[1,2]上單調(diào)遞增,則a≥﹣4
③在一次射箭比賽中,甲、乙兩名射箭手各射箭一次.設(shè)命題p:“甲射中十環(huán)”,命題q:“乙射中十環(huán)”,則命題“至少有一名射箭手沒(méi)有射中十環(huán)”可表示為(¬p)∨(¬q);
④若橢圓左、右焦點(diǎn)分別為F1,F2,垂直于x軸的直線(xiàn)交橢圓于A,B兩點(diǎn),當(dāng)直線(xiàn)過(guò)右焦點(diǎn)時(shí),△ABF1的周長(zhǎng)取最大值
A.①③④B.②③④C.②③D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) 部分圖象如圖所示.
(1)求的最小正周期及解析式;
(2)設(shè),求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的偶函數(shù)f(x),且對(duì)任意實(shí)數(shù)x都有f(x+2)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=x2,若在區(qū)間[﹣3,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣3k有6個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍為__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋子中有個(gè)紅球,個(gè)白球,若從中任取個(gè)球,則這個(gè)球中有白球的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1) 解關(guān)于x的不等式;
(2) 若函數(shù)的圖像恒在函數(shù)圖像的上方,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:.(為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017高考新課標(biāo)Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com