精英家教網 > 高中數學 > 題目詳情
已知(3
x
-
1
x
n的展開式中第三項為常數項,則展開式中個項系數的和為
 
考點:二項式系數的性質
專題:二項式定理
分析:利用二項展開式的通項公式求出通項,當r=3時x的指數為0,列出方程求出n,令二項式中的x=1,求出展開式各項的系數和.
解答: 解:(3
x
-
1
x
n的展開式的第三項為:3n-2
C
2
n
x
n-2
2
•(-
1
x
)2
=3n-2
C
2
n
x
n-2
2
-1

n
2
-2=0
,n=4.
令二項式中的x=1得到展開式的各項系數和為(3-1)4=16.
故展開式的各項系數和為16.
故答案為:16.
點評:本題考查利用二項展開式的通項公式解決二項展開式的特定項問題、考查通過賦值法求展開式的各項系數和.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=ax2-2x+1.
(1)若
1
3
≤a≤1
,且f(x)在[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a),求g(a)的表達式;
(2)在(1)的條件下,求證:g(a)≥
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設Sn是等差數列{an}的前n項和,若a1=-2,S4=10,則公差d=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

現(xiàn)將如圖所示的5個小正方形涂上紅、黃兩種顏色,其中3個涂紅色,2個涂黃色,若恰有兩個相鄰的小正方形涂紅色,則不同的涂法種數共有
 
.(用數字作答)

查看答案和解析>>

科目:高中數學 來源: 題型:

以平面直角坐標系的原點為極點,x軸的非負半軸為極軸建立極坐標系,使極坐標系的單位長度與直角坐標系的單位長度相同.已知直線l的參數方程為
x=-2+3t
y=
3
t
(t為參數),曲線C的極坐標方程為ρ=4cosθ,則直線l與曲線C的交點個數為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

經過隨機抽樣獲得100輛汽車經過某一雷達測速地區(qū)的時速(單位:km/h),并繪制成如圖所示的頻率分布直方圖,其中這100輛汽車時速的范圍是[30,80],數據分組為[30,40),[40,50),[50,60),[60,70),[70,80].設時速達到或超過60km/h的汽車有x輛,則x等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=
x
1-2x
-
x
2
( 。
A、是偶函數,在(-∞,0)上是增函數
B、是偶函數,在(-∞,0)上是減函數
C、是奇函數,在(-∞,0)上是增函數
D、是奇函數,在(-∞,0)上是減函數

查看答案和解析>>

科目:高中數學 來源: 題型:

在區(qū)間[-3,3]上任取兩數x,y,使x2-y-1<0成立的概率為(  )
A、
8
27
B、
7
27
C、
1
6
D、
4
27

查看答案和解析>>

同步練習冊答案