已知α∈(
π
2
,π)
,且sinα=
4
5
,則sin(α+
π
2
)-
1
2
cos(π+α)
=
-
9
10
-
9
10
分析:利用同角三角函數(shù)的基本關系及α的范圍求出 cosα,由誘導公式化簡要求的式子為cosα+
1
2
cosα,運算求得結果.
解答:解:∵已知α∈(
π
2
,π)
,且sinα=
4
5
,∴cosα=-
3
5
,
∴sin(α+
π
2
)-
1
2
cos(π+α)
=cosα+
1
2
cosα=
3
2
cosα=
3
2
×(-
3
5
)
=-
9
10

故答案為 -
9
10
點評:本題主要考查同角三角函數(shù)的基本關系的應用,誘導公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知-
π
2
<x<0,sinx+cosx=
1
5
,求sinxcosx和sinx-cosx的值.
(2)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-
π
2
<x<0,則sinx+cosx=
1
5

(I)求sinx-cosx的值;
(Ⅱ)求
3sin2
x
2
-2sin
x
2
cos
x
2
+cos2
x
2
tanx+cotx
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(
π
2
,π),cosα=-
4
5
,則tan(α-
π
4
)
等于(  )
A、
1
7
B、7
C、-
1
7
D、-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
π
2
<α<π,tanα-cotα=
8
3
(1)求tanα的值;(2)求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-
π
2
<x<0
sinx+cosx=
1
5
,則
sinx-cosx
sinx+cosx
等于( 。
A、-7
B、-
7
5
C、7
D、
7
5

查看答案和解析>>

同步練習冊答案