【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面的距離
(2)在線段上是否存在一點,使?若存在,求出的值;若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】現有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質地均勻的骰子決定自己去參加哪個游戲,擲出點數為1或2的人去參加甲游戲,擲出點數大于2的人去參加乙游戲.
(1) 求出4個人中恰有2個人去 參加甲游戲的概率;
(2)求這4個人中去參加甲游戲人數大于去參加乙游戲的人數的概率;
(3)用分別表示這4個人中去參加甲、乙游戲的人數,記,求隨機變量的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養(yǎng)魚技術具有養(yǎng)殖密度高、經濟效益好的特點.研究表明:“活水圍網”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數.當不超過4(尾/立方米)時,的值為(千克/年);當時,是的一次函數;當達到(尾/立方米)時,因缺氧等原因,的值為(千克/年).
(1)當時,求函數的表達式;
(2)當養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達到最大,并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數,當0≤x≤1時,f(x)=x2.如果函數g(x)=f(x)-(x+m)有兩個零點,則實數m的值為( )
A.2k(k∈Z) B.2k或2k+ (k∈Z)
C.0 D.2k或2k- (k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1).
(1)設a=2,函數f(x)的定義域為[3,63],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,,設函數.
(1)若函數的圖象關于直線對稱,且時,求函數的單調增區(qū)間;
(2)在(1)的條件下,當時,函數有且只有一個零點,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著機構改革工作的深入進行,各單位要減員增效,有一家公司現有職員2a人(140<2a<420,且a為偶數),每人每年可創(chuàng)利b萬元.據評估,在經營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.01b萬元,但公司需付下崗職員每人每年0.4b萬元的生活費,并且該公司正常運轉所需人數不得小于現有職員的,為獲得最大的經濟效益,該公司應裁員多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運
會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據已有數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com