已知a、b、c是實(shí)數(shù),函數(shù)f(x)=ax2+bx+c,g(x)=ax+b,當(dāng)-1≤x≤1時(shí),|f(x)|≤1.
(Ⅰ)證明:|c|≤1;
(Ⅱ)證明:當(dāng)-1≤x≤1時(shí),|g(x)|≤2;
(Ⅲ)設(shè)a>0,當(dāng)-1≤x≤1時(shí),g(x)的最大值為2,求f(x).
(Ⅰ)證:由條件當(dāng)-1≤x≤1時(shí),|f(x)|≤1,取x=0,得|c|=|f(0)|≤1,即|c|≤1.
(Ⅱ)證:當(dāng)a>0時(shí),g(x)=ax+b在[-1,1]上是增函數(shù),
所以g(-1)≤g(x)≤g(1),
因?yàn)閨f(x)|≤1 (-1≤x≤1),|c|≤1,
所以g(1)=a+b=f(1)-c 3 ≤|f(1)|+|c|≤2,
g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)≥-2,
由此得|g(x)|≤2;
當(dāng)a<0時(shí),g(x)=ax+b在[-1,1]上是減函數(shù),所以g(-1)≥g(x)≥g(1),
因?yàn)閨f(x)|≤1 (-1≤x≤1),|c|≤1,
所以g(-1)=-a+b=-f(-1)+c≤|f(-1)|+|c|≤2,
g(1)=a+b=f(1)-c≥-(|f(1)|+|c|)≥-2,
由此得|g(x)|≤2;
當(dāng)a=0時(shí),g(x)=b,f(x)=bx+c,因?yàn)椋?≤x≤1,
所以|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2;
綜上,得|g(x)|≤2;
(Ⅲ)解:因?yàn)?i>a>0,g(x)在[-1,1]上是增函數(shù),當(dāng)x=1時(shí)取得最大值2,即
g(1)=a+b=f(1)-f(0)=2,因?yàn)椋?≤f(0)=f(1)-2≤≤-1,
所以c=f(0)=-1.
因?yàn)楫?dāng)-1≤x≤1時(shí),f(x)≥-1,即f(x)≥f(0),據(jù)二次函數(shù)性質(zhì),直線x=0為二次函數(shù)f(x)的圖象的對(duì)稱軸,故有=0,即b=0,a=2,所以f(x)=2x.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
1+x |
fn(0)-1 |
fn(0)+2 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com