雙曲線數(shù)學公式=1(a>0,b>0)的焦距為4,一個頂點是拋物線的y2=4x的焦點,則雙曲線的離心率e等于


  1. A.
    2
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
A
分析:求出拋物線的y2=4x的焦點,確定雙曲線的幾何量,即可求得雙曲線的離心率.
解答:由題意,拋物線的y2=4x的焦點是(1,0),所以a=1
∵雙曲線=1(a>0,b>0)的焦距為4,
∴c=2
∴雙曲線的離心率e==2
故選A.
點評:本題考查拋物線、雙曲線的幾何性質,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:《第2章 圓錐曲線與方程》2013年單元測試卷(梅河口五中)(解析版) 題型:解答題

如圖,雙曲線=1(a>0,b>0)的離心率為、F2分別為左、右焦點,M為左準線與漸近線在第二象限內的交點,且
(I)求雙曲線的方程;
(II)設A(m,0)和(0<m<1)是x軸上的兩點.過點A作斜率不為0的直線l,使得l交雙曲線于C、D兩點,作直線BC交雙曲線于另一點E.證明直線DE垂直于x軸.中心O為圓心,分別以a和b為半徑作大圓和.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省岳陽一中高三(上)第四次月考數(shù)學試卷(文科)(解析版) 題型:選擇題

設O為坐標原點,F(xiàn)1,F(xiàn)2是雙曲線-=1(a>0,b>0)的焦點,若在雙曲線上存在點P,滿足∠F1PF2=60°,|OP|=a,則該雙曲線的漸近線方程為( )
A.x±y=0
B.x±y=0
C.x±y=0
D.x±y=0

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省南通市啟東市匯龍中學高二(上)第二次學情調查數(shù)學試卷(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學試卷精編:8.2 雙曲線(解析版) 題型:選擇題

設O為坐標原點,F(xiàn)1,F(xiàn)2是雙曲線-=1(a>0,b>0)的焦點,若在雙曲線上存在點P,滿足∠F1PF2=60°,|OP|=a,則該雙曲線的漸近線方程為( )
A.x±y=0
B.x±y=0
C.x±y=0
D.x±y=0

查看答案和解析>>

科目:高中數(shù)學 來源:2009年北京市高考數(shù)學試卷(文科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.

查看答案和解析>>

同步練習冊答案