(2012•松江區(qū)三模)已知直線l:y=x+b和圓C:x2+y2-2x-1=0,則“b=1”是“直線l與圓C相切”的( 。
分析:根據(jù)直線與圓相切的性質(zhì)可知,當(dāng)直線與圓相切時(shí),利用圓心到直線的距離等于半徑可求b,從而可判斷
解答:解:若b=1,直線方程為x-y+1=0,圓(x-1)2+y2=2的圓心(1,0),半徑r=
2

此時(shí)圓心(1,0)到直線x-y+1=0的距離d=
2
2
=
2
=r
∴直線l與圓C相切
若直線l與圓C相切,則圓心(1,0)到直線x-y+b=0的距離d=
|1+b|
2
=
2

∴b=1或b=-3
∴b=1”是“直線l與圓C相切”的充分不必要條件
故選B
點(diǎn)評(píng):本題以充分條件與必要條件的判斷為載體,主要考查了直線與圓相切的性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•松江區(qū)三模)擲兩顆骰子得兩數(shù),則事件“兩數(shù)之和大于4”的概率為
5
6
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•松江區(qū)三模)如圖放置的邊長(zhǎng)為1的正方形ABCD的頂點(diǎn)A、D分別在x軸、y軸正半軸上(含原點(diǎn))上滑動(dòng),則
OB
OC
的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•松江區(qū)三模)若鈍角三角形三內(nèi)角的度數(shù)成等差數(shù)列,且最大邊長(zhǎng)與最小邊長(zhǎng)的比值為m,則m的范圍是
m>2
m>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•松江區(qū)三模)若函數(shù)f(x)=2x+1,則f-1(3)=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•松江區(qū)三模)集合A={x|-3≤x≤2},B={x||x-a|≤1},且A?B,則實(shí)數(shù)a的取值范圍是
-2≤a≤1
-2≤a≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案