【題目】已知函數(shù).
(1)將函數(shù)的圖像向右平移個單位得到函數(shù)的圖像,若,求函數(shù)的值域;
(2)已知,分別為中角的對邊,且滿足,求的面積.
【答案】(1);(2).
【解析】
試題分析:化簡,(1)平移得,又當時,;當時,所求值域為;(2)由正弦定理得: ,由 .
試題解析:
..........1分
=......................3分
(1)平移可得,..............................4分
∵,∴,....................5分
當時,;當時,................6分
∴所求值域為...............7分
(2)由已知及正弦定理得:.................. 8分
∴,∵,∴,由得,從而,………………………………………10分
由正弦定理得:,......................................11分
∴................ 12分
科目:高中數(shù)學 來源: 題型:
【題目】在一次國際學術(shù)會議上,來自四個國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會說英語.
乙是法國人,還會說日語.
丙是英國人,還會說法語.
丁是日本人,還會說漢語.
戊是法國人,還會說德語.
則這五位代表的座位順序應為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數(shù),例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②函數(shù)f(x)=是單函數(shù);
③若f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).
其中的真命題是________.(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時間(單位:小時)與當天投籃命中率之間的關(guān)系:
時間 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李這5天的平均投籃命中率;用線性回歸分析的方法,預測小李該月6號打6小時籃球的投籃命中率.
附:線性回歸方程中系數(shù)計算公式, ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)點O為坐標原點,橢圓E:(a≥b>0)的右頂點為A,上頂點為B,過點O且斜率為的直線與直線AB相交M,且.
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x-2)2+(y-1)2=5的一條直徑,若橢圓E經(jīng)過P,Q兩點,求橢圓E的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(a<0).
(Ⅰ)當a=-3時,求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個零點,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《國務院關(guān)于修改〈中華人民共和國個人所得稅法實施條例〉的決定》已于2008年3月1日起施行,個人所得稅稅率表如下:
級數(shù) | 全月應納稅所得額 | 稅率 |
1 | 不超過500元的部分 | 5% |
2 | 超過500至2 000元的部分 | 10% |
3 | 超過2 000元至5 000元的部分 | 15% |
… | … | … |
9 | 超過100 000元的部分 | 45% |
注:本表所示全月應納稅所得額為每月收入額減去2 000元后的余額.
(1)若某人2008年4月份的收入額為4 200元,求該人本月應納稅所得額和應納的稅費;
(2)設(shè)個人的月收入額為x元,應納的稅費為y元.當0<x≤3 600時,試寫出y關(guān)于x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù)
(1).討論函數(shù)的單調(diào)性;
(2).若不等式對任意的恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓: 過橢圓: ()的短軸端點, , 分別是圓與橢圓上任意兩點,且線段長度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作圓的一條切線交橢圓于, 兩點,求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com