分析 先求出函數(shù)的單調(diào)性,再通過(guò)討論m的范圍,結(jié)合二次函數(shù)的性質(zhì)從而求出m的范圍即可.
解答 解:對(duì)任意x1,x2∈[-2,+∞)滿足$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
得f(x)在[-2,+∞)單調(diào)遞減,
當(dāng)m=0時(shí):f(x)=-2x+3,符合題意,
m≠0時(shí),則m<0,
此時(shí),對(duì)稱軸x=-$\frac{-2}{2m}$=$\frac{1}{m}$≤-2,
解得:m≥-$\frac{1}{2}$,
故答案為:[-$\frac{1}{2}$,0].
點(diǎn)評(píng) 本題考察了二次函數(shù)的性質(zhì),考察函數(shù)的單調(diào)性問(wèn)題,考察分類討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a=b<c | B. | a<b<c | C. | b<a<c | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $-\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com