精英家教網 > 高中數學 > 題目詳情
10.如圖,動圓C過點F(1,0),且與直線x=-1相切于點P.
(Ⅰ)求圓心C的軌跡Γ的方程;
(Ⅱ)過點F任作一直線交軌跡Γ于A,B兩點,設PA,PF,PB的斜率分別為k1,k2,k3,問:$\frac{{{k_1}+{k_3}}}{k_2}$是否為定值?若是,求出此定值;若不是,請說明理由.

分析 (Ⅰ)利用拋物線的定義,求圓心C的軌跡Γ的方程;
(Ⅱ)設直線AB的方程為x=my+1,與拋物線方程聯(lián)立,可得y2-4my-4=0,設A(x1,y1),B(x2,y2),得到根與系數的關系,即可得出結論.

解答 解:(Ⅰ)由題意,圓心C到點F的距離與到直線x=-1的距離相等,
由拋物線的定義,可得,圓心C的軌跡是以F 為焦點,x=-1為準線的拋物線,
∴圓心C的軌跡Γ的方程為y2=4x;
(Ⅱ)設直線AB的方程為x=my+1,與拋物線方程聯(lián)立,可得y2-4my-4=0
設A(x1,y1),B(x2,y2),則y1+y2=4m,y1y2=-4
設P(-1,t),則k1=$\frac{{y}_{1}-t}{m{y}_{1}+2}$,k3=$\frac{{y}_{2}-t}{m{y}_{2}+2}$,k2=-$\frac{t}{2}$,
∴k1+k3=$\frac{{y}_{1}-t}{m{y}_{1}+2}$+$\frac{{y}_{2}-t}{m{y}_{2}+2}$=-t=2k2,
∴$\frac{{{k_1}+{k_3}}}{k_2}$=2為定值.

點評 本題考查了拋物線的定義及其性質、直線與拋物線的位置關系,考查斜率的計算,考查了分析問題與解決問題的能力,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

20.已知點A(-1,0),B(1,0),△ABC的周長為6.
(Ⅰ)求動點C的軌跡E的方程;
(Ⅱ)設過點B(1,0)的直線l與曲線E相交于不同的兩點M,N.若點P在y軸上,且|PM|=|PN|,求點P的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=lnx-a(x-1),g(x)=ex,其中e為自然對數的底數.
(Ⅰ)設$t(x)=\frac{1}{x}g(x),x∈(0,+∞)$,求函數t(x)在[m,m+1](m>0)上的最小值;
(Ⅱ)過原點分別作曲線y=f(x)與y=g(x)的切線l1,l2,已知兩切線的斜率互為倒數,
求證:a=0或$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.某三棱錐的三視圖如圖所示,其中左視圖中虛線平分底邊,則該三棱錐的所有面中最大面的面積是( 。
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.如圖,點F是拋物線C:x2=2y的焦點,點P(x1,y1)為拋物線上的動點(P在第一象限),直線PF交拋物線C于另一點Q,直線l與拋物線C相切于點P.過點P作直線l的垂線交拋物線C于點R.
(1)求直線l的方程(用x1表示);
(2)求△PQR面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖①,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖②.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.f(x)=$\left\{{\begin{array}{l}{\frac{1}{x}+alnx,(x>0,0<a<e)}\\{cosx,(x≤0)}\end{array}}$,則y=f[f(x)]的零點有(  )
A.0個B.1個C.2個D.無窮多個

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.設實數x,y滿足$\left\{\begin{array}{l}2x-y≥0\\ x+y-3≥0\\ y-x≥0\end{array}\right.$,則z=2x+y的最小值為( 。
A.$\frac{9}{2}$B.4C.3D.0

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.將f(x)=$|\begin{array}{l}\sqrt{3}\;\;sinx\\ 1\;\;\;\;\;cosx\end{array}|$的圖象按$\overrightarrow n$=(-a,0)(a>0)平移,所得圖象對應的函數為偶函數,則a的最小值為$\frac{5π}{6}$.

查看答案和解析>>

同步練習冊答案