【題目】已知函數(shù)f(x)=sinx,x∈(0,2π),點(diǎn)P(x,y)是函數(shù)f(x)圖象上任一點(diǎn),其中0(0,0),A(2π,0),記△OAP的面積為g(x),則g′(x)的圖象可能是(
A.
B.
C.
D.

【答案】A
【解析】解:當(dāng)0<x<π時(shí),

當(dāng)x=π時(shí),g(x)不存在.

當(dāng)π<x<2π時(shí),

所以 ,所以

故g'(x)的圖象可能是A.

故選A.

【考點(diǎn)精析】利用函數(shù)的圖象和基本求導(dǎo)法則對(duì)題目進(jìn)行判斷即可得到答案,需要熟知函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值;若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時(shí),有 >0成立.
(Ⅰ)判斷f(x)在[﹣1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);
(Ⅲ)若f(x)≤m2﹣2am+1對(duì)所有的a∈[﹣1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的圖象如圖所示.

(1)試確定該函數(shù)的解析式;
(2)該函數(shù)的圖角可由y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知結(jié)論:“在三邊長(zhǎng)都相等的△ABC中,若D是BC的中點(diǎn),G是△ABC外接圓的圓心,則 ”.若把該結(jié)論推廣到空間,則有結(jié)論:“在六條棱長(zhǎng)都相等的四面體ABCD中,若M是△BCD的三邊中線的交點(diǎn),O為四面體ABCD外接球的球心,則 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 為奇函數(shù)
(1)求 的值.
(2)探究 的單調(diào)性,并證明你的結(jié)論.
(3)求滿足 的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 ,直線 .

(1)求直線 所過(guò)定點(diǎn) 的坐標(biāo);
(2)求直線 被圓 所截得的弦長(zhǎng)最短時(shí) 的值及最短弦長(zhǎng).
(3)已知點(diǎn) ,在直線 上( 為圓心),存在定點(diǎn) (異于點(diǎn) ),滿足:對(duì)于圓 上任一點(diǎn) ,都有 為一常數(shù),試求所有滿足條件的點(diǎn) 的坐標(biāo)及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l:mx﹣y=1,若直線l與直線x﹣(m﹣1)y=2垂直,則m的值為 , 動(dòng)直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長(zhǎng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合 ,其中 .
(1)若 A,用列舉法表示A;
(2)若A中有且僅有一個(gè)元素,求a的值組成的集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量ξ的分布如下:

ξ

1

2

3

P

1﹣

2a2

則實(shí)數(shù)a的值為(
A.﹣ 或﹣
B.
C.﹣
D. 或﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案