已知
是橢圓的兩焦點,
為橢圓上一點,若
,則離心率
的最小值是_______
設橢圓長半軸的長、半焦距的長分別為a、c;
;由橢圓定義得:
.根據(jù)余弦定理得
又
。當且僅當s=t時,等號成立;于是有
。則離心率
的最小值是
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
. (本小題滿分12分)已知拋物線
的焦點
以及橢圓
的上、下焦點及左、右頂點均在圓
上.
(1)求拋物線
和橢圓
的標準方程;
(2)過點
的直線交拋物線
于
、
兩不同點,交
軸于點
,已知
為定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓的中心在坐標原點,焦
點
F1、
F2在
x軸上,長軸
A1A2的長為4,左準線
l與
x軸的交點為
M,
∶
= 2∶1.
1、求橢圓的方程;
2、若點
P在直線
l上運動,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是橢圓
的左焦點,
是橢圓短軸上的一個頂點,橢圓的離心率為
,點
在
軸上,
,
三點確定的圓
恰好與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過
作斜率為
的直線
交橢圓于
兩點,
為線段
的中點,設
為橢圓中心,射線
交橢圓于點
,若
,若存在求
的值,若不存在則說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的左焦點為
, 點
在橢圓上, 若線段
的中點
在
軸上, 則
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的焦距等于
A.1 | B.2 | C. | D.4 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過點
的直線
與橢圓
交于
,線段
的中點為
,設直線
的斜率為
,直線
的斜率為
,則
的值為
查看答案和解析>>