在△ABC中,cos2
A
2
=
b+c
2c
(a,b,c分別是角A,B,C的對邊),則△ABC的形狀為(  )
A、等腰直角三角形
B、直角三角形
C、等腰三角形或直角三角形
D、等邊三角形
考點:三角形的形狀判斷
專題:解三角形
分析:由降冪公式和余弦定理化簡可得勾股定理的式子,可得結論.
解答: 解:∵cos2
A
2
=
b+c
2c
,
1+cosA
2
=
b+c
2c
,
∴c(1+cosA)=b+c,
∴c(1+
b2+c2-a2
2bc
)=b+c,
∴c•
b2+c2-a2+2bc
2bc
=b+c,
化簡可得b2+c2-a2+2bc=2b2+2bc,
∴c2=a2+b2,∴△ABC為直角三角形,
故選:B.
點評:本題考查三角形形狀的判斷,涉及余弦定理和降冪公式的應用,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:
2
1
(2xlnx+x)dx=
 
.設函數(shù)f(x)=ax3+2,若f′(-1)=3,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各函數(shù)中,是偶函數(shù)且在區(qū)間(0,π)上為增函數(shù)的是( 。
A、y=cosx
B、y=sinx
C、y=-cosx
D、y=-cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為[-1,5],部分對應值如下表:
x -1 0 4 5
f(x) 1 2 2 1
f(x)的導函數(shù)y=f′(x)的圖象如圖所示.給出關于函數(shù)f(x)的判斷:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上不單調;
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數(shù)y=f(x)-a可能有3個零點.
其中判斷正確的個數(shù)是( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z滿足iz=1+2i,則z=( 。
A、2-iB、-2-i
C、-2+iD、2+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
x+1
x-1
在點(3,2)處的切線與直線ax-y+1=0垂直,則a的值為( 。
A、-
1
2
B、
1
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知lg(x+y)+lg(2x+3y)-lg3=lg4+lgx+lgy,則
x
y
的值( 。
A、3
B、3或
1
2
C、
1
2
D、3或0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,扇形OAB中,OA=OB=1,
AB
=2.在
AB
上隨機取一點C,則∠AOC和∠BOC中至少有一個是鈍角的概率是( 。
A、1-
π
4
B、2-
π
2
C、1-
π
8
D、
π
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設p:“x,y,z中至少有一個等于1”?“(x-1)(y-1)(z-1)=0”;q:“
x-1
+|y-2|+(z-3)2=0”?“(x-1)(y-2)(z-3)=0”,那么p,q的真假是( 。
A、p真q真B、p真q假
C、p假q真D、p假q假

查看答案和解析>>

同步練習冊答案