11.函數(shù)$y=\sqrt{x-1}$與y=ln(2-x)的定義域分別為M、N,則M∩N=( 。
A.(1,2]B.[1,2)C.(-∞,1]∪(2,+∞)D.(2,+∞)

分析 分別求函數(shù)$y=\sqrt{x-1}$與y=ln(2-x)的定義域,再利用交集的定義寫出M∩N.

解答 解:函數(shù)$y=\sqrt{x-1}$的定義域?yàn)镸={x|x-1≥0}={x|x≥1},
函數(shù)y=ln(2-x)的定義域?yàn)镹={x|2-x>0}={x|x<2},
則M∩N={x|1≤x<2}=[1,2).
故選:B.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域和交集的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.10${\;}^{2-lg\frac{4}{5}}$=125.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若點(diǎn)($\sqrt{3}$,2)在直線l:ax+y+1=0上,則直線l的傾斜角為( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知z1、z2為復(fù)數(shù),且|z1|=2,若z1+z2=2i,則|z1-z2|的最大值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在等腰△ABC中,∠BAC=90°,AB=AC=2,$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{AC}$=3$\overrightarrow{AE}$,則$\overrightarrow{BE}$在$\overrightarrow{AD}$方向上的投影$-\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知?jiǎng)狱c(diǎn)P在橢圓$\frac{x^2}{36}+\frac{y^2}{27}=1$上,若點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)M滿足$|\overrightarrow{AM}|=1$,$\overrightarrow{PM}•\overrightarrow{AM}=0$,則$|\overrightarrow{PM}|$的最小值是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.天氣預(yù)報(bào)是氣象專家根據(jù)預(yù)測(cè)的氣象資料和專家們的實(shí)際經(jīng)驗(yàn),經(jīng)過分析推斷得到的,在現(xiàn)實(shí)的生產(chǎn)生活中有著重要的意義.某快餐企業(yè)的營(yíng)銷部門經(jīng)過對(duì)數(shù)據(jù)分析發(fā)現(xiàn),企業(yè)經(jīng)營(yíng)情況與降雨天數(shù)和降雨量的大小有關(guān).
(Ⅰ)天氣預(yù)報(bào)說,在今后的三天中,每一天降雨的概率均為40%,該營(yíng)銷部門通過設(shè)計(jì)模擬實(shí)驗(yàn)的方法研究三天中恰有兩天降雨的概率,利用計(jì)算機(jī)產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),并用1,2,3,4,表示下雨,其余6個(gè)數(shù)字表示不下雨,產(chǎn)生了20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
求由隨機(jī)模擬的方法得到的概率值;
(Ⅱ)經(jīng)過數(shù)據(jù)分析,一天內(nèi)降雨量的大小x(單位:毫米)與其出售的快餐份數(shù)y成線性相關(guān)關(guān)系,該營(yíng)銷部門統(tǒng)計(jì)了降雨量與出售的快餐份數(shù)的數(shù)據(jù)如下:
降雨量(毫米)12345
快餐數(shù)(份)5085115140160
試建立y關(guān)于x的回歸方程,為盡量滿足顧客要求又不造成過多浪費(fèi),預(yù)測(cè)降雨量為6毫米時(shí)需要準(zhǔn)備的快餐份數(shù).(結(jié)果四舍五入保留整數(shù))
附注:回歸方程$\widehaty=\widehatbx+\widehata$中斜率和截距的最小二乘估計(jì)公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{({x_i}}-\overline x{)^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=-a2lnx+x2-ax(a∈R).
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)如果a>0且關(guān)于x的方程f(x)=m有兩解x1,x2(x1<x2),證明x1+x2>2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=-2x2+1的單調(diào)遞增區(qū)間為( 。
A.(-∞,0]B.(0,+∞)C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案