精英家教網 > 高中數學 > 題目詳情
給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即{x}=m在此基礎上給出下列關于函數f(x)=|x-{x}|的四個命題:
f(-
1
2
)=
1
2
;②f(3.4)=-0.4;
f(-
1
4
)=f(
1
4
)
;④y=f(x)的定義域為R,值域是[-
1
2
1
2
]
;
則其中真命題的序號是( 。
A、①②B、①③C、②④D、③④
分析:在理解新定義的基礎上,求出{-
1
2
}、{3.4}、{-
1
4
}、{
1
4
}對應的整數,進而利用函數f(x)=|x-{x}|可判斷①②③的 
正誤;而對于④易知f(x)=|x-{x}|的值域為[0,
1
2
],則④錯誤.此時即可作出選擇.
解答:解:①∵-1-
1
2
<-
1
2
≤-1+
1
2
∴{-
1
2
}=-1∴f(-
1
2
)=|-
1
2
-{-
1
2
}|=|-
1
2
+1|=
1
2
∴①正確;
②∵3-
1
2
<3.4≤3+
1
2
∴{3.4}=3∴f(3.4)=|3.4-{3.4}|=|3.4-3|=0.4∴②錯誤;
③∵0-
1
2
<-
1
4
≤0+
1
2
∴{-
1
4
}=0∴f(-
1
4
)=|-
1
4
-0|=
1
4
,
∵0-
1
2
1
4
≤0+
1
2
∴{
1
4
}=0∴f(
1
4
)=|
1
4
-0|=
1
4
,∴③正確;
④y=f(x)的定義域為R,值域是[0,
1
2
]∴④錯誤.
故選B.
點評:本題主要考查對于新定義的理解與運用,是對學生能力的考查.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即{x}=m.在此基礎上給出下列關于函數f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(-
1
2
,
1
2
];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數y=f(x)的最小正周期為1;
④函數y=f(x)在(-
1
2
,
3
2
]上是增函數;
則其中真命題是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即{x}=m,在此基礎上給出下列關于函數f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是(-
1
2
1
2
];
②點(k,0)(k∈Z)是y=f(x)的圖象的對稱中心;
③函數y=f(x)在(-
1
2
,
3
2
]上是增函數;
④函數y=f(x)的最小正周期為1;
則其中真命題是
①④
①④

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•門頭溝區(qū)一模)給出定義:若m-
1
2
≤x<m+
1
2
(其中m為整數),則m叫離實數x最近的整數,記作[x]=m,已知f(x)=|[x]-x|,下列四個命題:
①函數f(x)的定義域為R,值域為[0,
1
2
]
; ②函數f(x)是R上的增函數;
③函數f(x)是周期函數,最小正周期為1;  ④函數f(x)是偶函數,
其中正確的命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•昌平區(qū)二模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x}=m,在此基礎上給出下列關于函數f(x)=x-{x}的四個命題:
①函數y=f(x)的定義域為R,最大值是
1
2
;②函數y=f(x)在[0,1]上是增函數;
③函數y=f(x)是周期函數,最小正周期為1;④函數y=f(x)的圖象的對稱中心是(0,0).
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
(m∈Z),則m叫做離實數x最近的整數,記作{x},即{x}=m;在此基礎上有函數f(x)=|x-{x}|(x∈R).對于函數f(x)給出如下判斷:①函數f(x)是偶函數;②函數f(x)是周期函數;③函數f(x)在區(qū)間(-
1
2
,
1
2
]
上單調遞增;④函數f(x)的圖象關于直線x=k+
1
2
(k∈Z)對稱.則以上判斷中正確結論的個數是( 。

查看答案和解析>>

同步練習冊答案