已知f′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,且偶函數(shù)f(x)滿足f(2x-1)<,則x的取值范圍是( )
A.(
B.
C.(
D.[
【答案】分析:由于已知f′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,所以函數(shù)f(x)在[0,+∞)上單調(diào)遞增,又由于函數(shù)f(x)為偶函數(shù),所以f(|x|)=f(x),所以要求滿足 ,等價(jià)于求解:f(|2x-1|)<f(||)的解集,利用此函數(shù)的單調(diào)性即可.
解答:解:因?yàn)閒′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,所以函數(shù)f(x)在[0,+∞)上單調(diào)遞增,
又因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以f(|x|)=f(x),所以要求 的解集,
等價(jià)于求解:f(|2x-1|)<f(||)的解集,
等價(jià)于:
解得:,
故選A.
點(diǎn)評:此題是中檔題.此題考查了偶函數(shù)的定義及導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,還考查了含絕對值的不等式的求解以及學(xué)生靈活應(yīng)用知識(shí)分析解決問題的能力和計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x+
π
2
)
是偶函數(shù),給出下列四個(gè)結(jié)論:
①f(x)是周期函數(shù);
②x=π是f(x)圖象的一條對稱軸;
③(-π,0)是f(x)圖象的一個(gè)對稱中心;
④當(dāng)x=
π
2
時(shí),f(x)一定取最大值.
其中正確的結(jié)論的代號是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,且偶函數(shù)f(x)滿足f(2x-1)<f(
13
)
,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是f(x)的導(dǎo)函數(shù),在區(qū)間[0,+∞)上f′(x)>0,且偶函數(shù)f(x)滿足f(2x-1)<f(
1
3
)
,則x的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的可導(dǎo)函數(shù),對任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,則f(2)與f(e)•ln2的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是定義在R上的可導(dǎo)函數(shù),對任意x∈(0,+∞),都有f(x)>0,且f(x)>f′(x)•lnxx,則f(2)與f(e)•ln2的大小關(guān)系是( 。
A.f(2)>f(e)•ln2B.f(2)=f(e)•ln2C.f(2)<f(e)•ln2D.不能確定

查看答案和解析>>

同步練習(xí)冊答案