精英家教網 > 高中數學 > 題目詳情
求函數y=sin4x+2sinxcosx-cos4x的最小正周期和最小值;并寫出該函數在[0,π]上的單調遞增區(qū)間.
【答案】分析:先分解因式,然后利用二倍角的余弦公式以及兩角差的余弦,化為一個角的一個三角函數的形式,求出周期,最小值以及函數的單調增區(qū)間.
解答:解:y=sin4x+2sinxcosx-cos4x
=(sin2x+cos2x)(sin2x-cos2x)+sin2x
=sin2x-cos2x
=2sin(2x-).
故該函數的最小正周期是π;最小值是-2;單調遞增區(qū)間是[0,],[,π].
點評:本題考查三角函數的周期性及其求法,同角三角函數間的基本關系,二倍角的正弦,二倍角的余弦,正弦函數的單調性,三角函數的最值,把三角函數式化簡為y=Asin(ωx+φ)+k(ω>0)是解決周期、最值、單調區(qū)間問題的常用方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

求函數y=sin4x+2
3
sinxcosx-cos4x
的最小正周期、最小值和單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

求函數y=sin4x+2
3
sinxcosx-cos4x的最小正周期和最小值;并寫出該函數在[0,π]上的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源:重慶市高考真題 題型:解答題

求函數y=sin4x+2sinxcosx-cos4x的最小正周期和最小值;并寫出該函數在[0,π]上的單調遞增區(qū)間。

查看答案和解析>>

科目:高中數學 來源:2011年內蒙古包頭一中高考數學一模試卷(理科)(解析版) 題型:解答題

求函數y=sin4x+2sinxcosx-cos4x的最小正周期和最小值;并寫出該函數在[0,π]上的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源:2006年高考第一輪復習數學:4.5 三角函數的圖象與性質1(解析版) 題型:解答題

求函數y=sin4x+2sinxcosx-cos4x的最小正周期和最小值;并寫出該函數在[0,π]上的單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案