解:(I)函數(shù)f(x)的定義域為R,f'(x)=(ex-1-1)(x2+2x)=x(x+2)(ex-1-1)
令f'(x)=0,可得ex-1-1=0或x2+2x=0,即x1=-2,x2=0,x3=1
列表如下:
x | (-∞,-2) | (-2,0) | (0,1) | (1,+∞) |
f'(x) | - | + | - | + |
f(x) | ↓ | ↑ | ↓ | ↑ |
由上表可知函數(shù)f(x)在區(qū)間(-2,0)和(1,+∞)上是單調(diào)遞增函數(shù);在區(qū)間(-∞,-2)和(0,1)上是單調(diào)遞減函數(shù).…(6分)
(II)設(shè)函數(shù)h(x)=f(x)-g(x)=x2ex-1-x3=x2(ex-1-x),
又設(shè)函數(shù)?(x)=ex-1-x,x∈R,則?'(x)=ex-1-1,
所以當(dāng)x∈(-∞,1)時,?'(x)<0,此時?(x)為減函數(shù);
當(dāng)x∈(1,+∞)時,?'(x)>0,此時?(x)為增函數(shù),
因而?(x)≥?(1)=0恒成立(等號僅當(dāng)x=1處取得)
綜上,當(dāng)x=0或1時,h(x)=0,即f(x)=g(x);
當(dāng)x≠0,且x≠1時,h(x)>0,即f(x)>g(x).
科目:高中數(shù)學(xué) 來源:2013屆云南省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分10分)已知函數(shù).
(I)討論的單調(diào)性;
(II)設(shè),證明:當(dāng)時,;
(III)若函數(shù)的圖像與x軸交于A,B兩點,線段AB中點的橫坐標(biāo)為x0,
證明:(x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期期中考試理科數(shù)學(xué) 題型:填空題
(本小題滿分14分)
已知函數(shù).
(I)討論的單調(diào)性;
(II)設(shè) .當(dāng)時,若對任意,存在,(),使,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年內(nèi)蒙古巴彥淖爾市高三第一學(xué)期期中考試理科數(shù)學(xué) 題型:解答題
(本題滿分12分)已知函數(shù).
(I)討論的單調(diào)性;
(II)設(shè),證明:當(dāng)時,;
(III)若函數(shù)的圖像與x軸交于A,B兩點,線段AB中點的橫坐標(biāo)為x0,證明:(x0)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省高三12月月考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知函數(shù):
(I) 討論函數(shù)的單調(diào)性;
(II)若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的
,若函數(shù)在區(qū)間上有最值,求實數(shù)的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010屆沈陽市高三第二次模擬考試數(shù)學(xué)試卷 題型:解答題
已知函數(shù),.
(I)討論的單調(diào)性.
(II)當(dāng)時,討論關(guān)于的方程的實根的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com