試題分析:因為{
}為等差數(shù)列,
.
點評:等差數(shù)列的前n和公式有兩個分別是
,要注意結(jié)合題目條件靈活選用.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知數(shù)列
滿足:
,
,且
,則右圖中第9行所有數(shù)的和為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知等差數(shù)列40,37,34,……前
項和為
,則使
最大的正整數(shù)
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
等差數(shù)列{a
n}中,a
4+a
10+a
16=30,則a
182a
14的值為 ( )
A.20 | B.10 | C.10 | D.20 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列
的前四項和為10,且
成等比數(shù)列
(1)求通項公式
(2)設
,求數(shù)列
的前
項和
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分16分)
已知數(shù)列
前
項和
.數(shù)列
滿足
,數(shù)列
滿足
。(1)求數(shù)列
和數(shù)列
的通項公式;(2)求數(shù)列
的前
項和
;(3)若
對一切正整數(shù)
恒成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題14分)已知
是等差數(shù)列,其前n項和為S
n,
是等比數(shù)列,且
,
.
(Ⅰ)求數(shù)列
與
的通項公式;
(Ⅱ)記
,
,求
(
).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列
的前n項和
(n為正整數(shù))。
(Ⅰ)令
,求證數(shù)列
是等差數(shù)列,并求數(shù)列
的通項公式;
(Ⅱ)令
,
,求
.
查看答案和解析>>