已知橢圓M:數(shù)學(xué)公式的面積為πab,M包含于平面區(qū)域Ω:數(shù)學(xué)公式內(nèi),向平面區(qū)域Ω內(nèi)隨機(jī)投一點(diǎn)Q,點(diǎn)Q落在橢圓內(nèi)的概率為數(shù)學(xué)公式
(Ⅰ)試求橢圓M的方程;
(Ⅱ)若斜率為數(shù)學(xué)公式的直線l與橢圓M交于C、D兩點(diǎn),點(diǎn)數(shù)學(xué)公式為橢圓M上一點(diǎn),記直線PC的斜率為k1,直線PD的斜率為k2,試問:k1+k2是否為定值?請(qǐng)證明你的結(jié)論、

解:(Ⅰ)平面區(qū)域Ω:是一個(gè)矩形區(qū)域,如圖所示.
依題意及幾何概型,可得

因?yàn)?img class='latex' src='http://thumb.1010pic.com/pic5/latex/527208.png' />,
所以,
所以,橢圓M的方程為
(Ⅱ)設(shè)直線l的方程為:,C(x1,y1),D(x2,y2
聯(lián)立直線l'的方程與橢圓方程得:

(1)代入(2)得:
化簡(jiǎn)得:x2+bx+b2-3=0)
當(dāng)△>0時(shí),即,b2-4(b2-3)>0
也即,|b|<2時(shí),直線l'與橢圓有兩交點(diǎn),
由韋達(dá)定理得:
所以,

則k1+k2==
所以,k1+k2為定值.
分析:(Ⅰ)平面區(qū)域Ω:是一個(gè)矩形區(qū)域,如圖所示.
依題意及幾何概型,可得,由此可導(dǎo)出橢圓M的方程.
(Ⅱ)設(shè)直線l的方程為:,C(x1,y1),D(x2,y2
聯(lián)立直線l'的方程與橢圓方程得:,
,
然后結(jié)合題設(shè)條件,由根的判別式和根與系數(shù)的關(guān)系能夠推導(dǎo)出k1+k2為定值0.
點(diǎn)評(píng):本題綜合考查橢圓的性質(zhì)及應(yīng)用和直線 與橢圓的位置關(guān)系,解題時(shí)要認(rèn)真審題、仔細(xì)解答,避免出現(xiàn)不必要的錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西城區(qū)二模)已知橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
3
,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為6+4
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)直線l與橢圓M交于A,B兩點(diǎn),且以AB為直徑的圓過橢圓的右頂點(diǎn)C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•朝陽區(qū)二模)已知橢圓M:
x2
a2
+
y2
b2
=1 (a>b>0)
的左右焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0).在橢圓M中有一內(nèi)接三角形ABC,其頂點(diǎn)C的坐標(biāo)(
3
,1)
,AB所在直線的斜率為
3
3

(Ⅰ)求橢圓M的方程;
(Ⅱ)當(dāng)△ABC的面積最大時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:模擬題 題型:解答題

已知橢圓M:的面積為πab,且M包含于平面區(qū)域Ω:內(nèi),向Ω內(nèi)隨機(jī)投一點(diǎn)Q,點(diǎn)Q落在橢圓M內(nèi)的概率為,
(1)試求橢圓M的方程;
(2)若斜率為的直線l與橢圓M交于C,D兩點(diǎn),點(diǎn)P(1,)為橢圓M上一點(diǎn),記直線PC的斜率為k1,直線PD的斜率為k2,試問:k1+k2是否為定值?請(qǐng)證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省深圳市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓M:的面積為πab,M包含于平面區(qū)域Ω:內(nèi),向平面區(qū)域Ω內(nèi)隨機(jī)投一點(diǎn)Q,點(diǎn)Q落在橢圓內(nèi)的概率為
(Ⅰ)試求橢圓M的方程;
(Ⅱ)若斜率為的直線l與橢圓M交于C、D兩點(diǎn),點(diǎn)為橢圓M上一點(diǎn),記直線PC的斜率為k1,直線PD的斜率為k2,試問:k1+k2是否為定值?請(qǐng)證明你的結(jié)論、

查看答案和解析>>

同步練習(xí)冊(cè)答案