若函數(shù)f(x)=ln
ex
e-x
,則
2014
k=1
f(
ke
2015
)=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出f(
ke
2015
)的表達(dá)式,利用對(duì)數(shù)的基本運(yùn)算及倒序相加法即可得到結(jié)論.
解答: 解:f(
ke
2015
)
=ln
ke2
2015e-ke

2014
k=1
f(
ke
2015
)

=
2014
k=1
ln
ke2
2015e-ke

=ln
e
2014
+ln
2e
2013
+ln
3e
2012
+…+ln
1007e
1008
+ln
1008e
1007
+…+ln
2013e
2
+ln
2014e
1

=lne2+lne2+lne2+…+lne2
=1007×lne2=2014
故答案為:2014.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)的基本運(yùn)算及倒序相加法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,右頂點(diǎn)為A,上頂點(diǎn)為B,已知|AB|=
3
2
|F1F2|.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)P為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段PB為直徑的圓經(jīng)過(guò)點(diǎn)F1,經(jīng)過(guò)點(diǎn)F2的直線l與該圓相切于點(diǎn)M,|MF2|=2
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1-an+1bn+2bn+1bn=0.
(1)令cn=
an
bn
,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n-1,求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)(x∈R),對(duì)函數(shù)y=g(x)(x∈I),定義g(x)關(guān)于f(x)的“對(duì)稱函數(shù)”為函數(shù)y=h(x)(x∈I),y=h(x)滿足:對(duì)任意x∈I,兩個(gè)點(diǎn)(x,h(x)),(x,g(x))關(guān)于點(diǎn)(x,f(x))對(duì)稱.若h(x)是g(x)=
4-x2
關(guān)于f(x)=3x+b的“對(duì)稱函數(shù)”,且h(x)>g(x)恒成立,則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax3+3x2-x恰好有三個(gè)單調(diào)區(qū)間,那么a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x,y滿足約束條件
y≤x
x+y≤4
y≥k
,且z=2x+y的最小值為-6,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△ABC中,已知
AB
AC
=tanA,當(dāng)A=
π
6
時(shí),△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,計(jì)算
1-i
(1+i)2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖的程序框圖,則輸出的S為(  )
A、6B、10C、14D、30

查看答案和解析>>

同步練習(xí)冊(cè)答案