設(shè)a>0,b>0且a+b=1則 
1
a
+
2
b
的最小值是( 。
A、2
B、4
C、3+2
2
D、6
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“乘1法”和基本不等式的性質(zhì)即可得出.
解答: 解:∵a>0,b>0且a+b=1,
1
a
+
2
b
=(a+b)(
1
a
+
2
b
)
=3+
b
a
+
2a
b
≥3+2
b
a
2a
b
=3+2
2
,當且僅當b=
2
a=2-
2
取等號.
1
a
+
2
b
的最小值是3+2
2

故選:C.
點評:本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系xOy中,已知點A(-3,1),直線OB的傾斜角為45°,且|OB|=
2

(Ⅰ)求點B的坐標及線段AB的長度;
(Ⅱ)在平面直角坐標系xOy中,取1厘米為單位長度.現(xiàn)有一質(zhì)點P以1厘米/秒的速度從點B出發(fā),沿傾斜角為60°的射線BC運動,另一質(zhì)點Q同時以
2
厘米/秒的速度從點A出發(fā)作直線運動,如果要使得質(zhì)點Q與P會合,那么需要經(jīng)過多少時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=2x+1與y軸的交點所組成的集合為( 。
A、{0,1}
B、{(0,1)}
C、{-
1
2
,0}
D、{(-
1
2
,0)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計算:(tan50-
1
tan50
)•
cos700
1+sin700

(2)求f(x)=2(sinx+cosx)-sinx•cosxx∈[0,
π
2
]
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P:x≥3或x≤1,Q:x2-3x+2≥0,則“非P”是“非Q”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}、{bn}滿足:an=(-1)n(n2+1),bn=an+an+1,n∈N*
(1)求a1的值;
(2)求數(shù)列{bn}的通項公式;
(3)求數(shù)列{an}的前100項和S100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一半徑為4的圓,現(xiàn)將一枚直徑為2的硬幣投向其中(硬幣與圓面有公共點就算是有效試驗,硬幣完全落在圓外的不計),則硬幣完全落入圓內(nèi)的概率為( 。
A、
4
9
B、
9
16
C、
4
25
D、
9
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其中a1=
1
2
,2an=an-1(n≥2);等差數(shù)列{bn},其中b3=2,b5=6.
(1)求數(shù)列{an}的通項公式;
(2)在數(shù)列{bn}中是否存在一項bm(m為正整數(shù)),使得 b3,b5,bm成等比數(shù)列,若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos(-θ),sin(-θ)),
b
=(cos(
π
2
-θ),sin(
π
2
-θ)),設(shè)
m
=
a
+(x2+3)
b
,
n
=-y
a
+x
b
,且滿足
m
n

(1)寫出y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)設(shè)函數(shù)g(x)=f(x)-ax在(-1,1)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案