7.已知全集U={1,2,3,4},集合A={1,2},B={2,3},則(∁UA)∪B={2,3,4}.

分析 根據(jù)補(bǔ)集和并集的定義進(jìn)行計(jì)算即可.

解答 解:全集U={1,2,3,4},集合A={1,2},B={2,3},
所以∁UA={3,4},
所以(∁UA)∪B={2,3,4}.
故答案為:{2,3,4}.

點(diǎn)評 本題考查了補(bǔ)集與并集的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知tanα=-2,則(sinα-cosα)2=$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率.
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehaty=bx+a$;假設(shè)由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:參考公式:b=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{e}^{x},x≤0}\end{array}\right.$,若方程f(x)+x-k=0,恰有兩個實(shí)數(shù)根,則k的取值范圍是( 。
A.k>1B.k≤1C.k<1D.k≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{2}$x2,g(x)=alnx.
(1)若曲線y=f(x)-g(x)在x=1處的切線的方程為6x-2y-5=0,求實(shí)數(shù)a的值;
(2)設(shè)h(x)=f(x)+g(x),若對任意兩個不等的正數(shù)x1,x2,都有$\frac{h({x}_{1})-h({x}_{2})}{{x}_{1}-{x}_{2}}$>2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$的定義域?yàn)椋?1,1),
(1)證明f(x)在(-1,1)上是增函數(shù);
(2)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),滿足條件:①f(2)=1,②f(xy)=f(x)+f(y),③當(dāng)x>1時,f(x)>0.
(1)求證:函數(shù)f(x)是偶函數(shù);       
(2)討論函數(shù)f(x)的單調(diào)性;
(3)求不等式f(x)+f(x+3)≤2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.命題“?x∈N*,f(n)∈N* 且f(n)≤n的否定形式是?x∈N*,f(n)∉N*或f(n)>n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.計(jì)算:
(1)log535-2log5$\frac{7}{3}$+log57-log51.8;
(2)$\frac{lg\sqrt{27}+lg8-lg\sqrt{1000}}{lg1.2}$;
(3)(1g5)2+1g2•lg50.

查看答案和解析>>

同步練習(xí)冊答案