1.某房產(chǎn)公司現(xiàn)有出租房20套,若每月租金為1000元,可全部租出,每月租金每增加100元,則租不出去的房間將多一套.而且每月各項(xiàng)固定支出共8100元,設(shè)月租金是100元的整數(shù)倍,每月租出x套,月收益為y元,且月收益=月租金-每月各項(xiàng)固定支出.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式.
(2)每月租出多少套房間,所得收益將達(dá)到最大值,最大收益是多少元?
(3)當(dāng)每月出租房間為多少套時(shí).所得收益為0元?

分析 (1)由題意可得:y=[1000+100(20-x)]x-8100,x∈N(0≤x≤20).
(2)y=-100(x-15)2+14400.利用二次函數(shù)的單調(diào)性即可得出.
(3)令-100x2+3000x-8100=0,x∈N(0≤x≤20).解出即可得出.

解答 解:(1)由題意可得:y=[1000+100(20-x)]x-8100=-100x2+3000x-8100,x∈N(0≤x≤20).
(2)y=-100(x-15)2+14400.
∴當(dāng)x=15時(shí),y取得最大值14400元.
因此每月租出15套房間,所得收益將達(dá)到最大值,最大收益是14400元.
(3)令-100x2+3000x-8100=0,x∈N(0≤x≤20).
解得x=3.
當(dāng)每月出租房間為3套時(shí).所得收益為0元.

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性及其應(yīng)用、方程的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓經(jīng)過點(diǎn)A(-2,0),B(0,-1),點(diǎn)P是橢圓上在第一象限的點(diǎn),直線PA交y軸于點(diǎn)M,直線PB交x軸于點(diǎn)N.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(Ⅱ)是否存在點(diǎn)P,使得直線MN與直線AB平行?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖放置的邊長為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是y=f(x),則${∫}_{-1}^{1}$f(x)dx=( 。
A.$\frac{π}{2}$+1B.$\frac{π}{2}$+2C.π+1D.π+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),(x2+l)f′(x)+2xf(x)<0,且f(2)=0.則不等式f(x)<0的解集是(  )
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(0,2)C.(-2,0)∪(2,+∞)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知sinα=$\frac{3}{5}$,則cos2α=( 。
A.-$\frac{16}{25}$B.-$\frac{7}{25}$C.$\frac{7}{25}$D.$\frac{16}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若等式(2x-1)2017=a0+a1x+a2x2+…+a2017x2017對(duì)于一切實(shí)數(shù)x都成立,則a0+$\frac{1}{2}a$1+$\frac{1}{3}$a2+…+$\frac{1}{2018}$a2017=(  )
A.$\frac{1}{4036}$B.$\frac{1}{2018}$C.$\frac{2}{2018}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|-|x-1|.
(1)解關(guān)于x的不等式f(x)≤1;
(2)設(shè)函數(shù)f(x)的最大值為M,若M=3a+4b(a>0,b>0),求證:$\frac{1}{a+3b}+\frac{1}{2a+b}$≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}與[bn}滿足an+1=3an,bn=bn+1-1,b6=a1=3,若(2λ-1)an>36bn,對(duì)一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是($\frac{13}{18}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線l過點(diǎn)P(1,1),且與曲線y=x3在點(diǎn)P處的切線互相垂直,則直線l的方程為(  )
A.x+3y+4=0B.x+3y-4=0C.3x-y+2=0D.3x-y-2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案