已知函數(shù)f(x)=
m-2
2x+1
是R上的奇函數(shù),求m的值.
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:因?yàn)槎x域?yàn)槿w實(shí)數(shù),故根據(jù)奇函數(shù)的性質(zhì)有f(0)=0,問題得以解決.
解答: 解:∵函數(shù)f(x)=
m-2
2x+1
是R上的奇函數(shù),
∴f(0)=0,
1
2
(m-2)=0,
即m=2
點(diǎn)評(píng):本題主要考查了基函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不大于x的最大整數(shù),則對(duì)任意實(shí)數(shù)x,有( 。
A、[-x]=-[x]
B、[x+
1
2
]=[x]
C、[2x]=2[x]
D、[x]+[x+
1
2
]=[2x]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐 S-ABC中,AC⊥SA,AC⊥AB,SA=SB=AB=2,AC=1.
(1)求異面直線AB與SC所成的角的余弦值;
(2)在線段AB上求一點(diǎn)D,使CD與平面SAC為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-1,1]上的奇函數(shù)f(x),對(duì)任意m、n∈[-1,1],且m+n≠0時(shí),恒有
f(m)+f(n)
m+n
>0;
(1)比較f(
1
2
)與f(
1
3
)大小;
(2)判斷函數(shù)f(x)在[-1,1]上的單調(diào)性,并用定義證明;
(3)若a-8x+1>0對(duì)滿足不等式f(x-
1
2
)+f(
1
4
-2x)<0對(duì)任意x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓x2+my2=1的焦點(diǎn)在y軸上,焦距是短軸長的兩倍,則m的值為(  )
A、
1
5
B、
1
2
C、
1
4
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若a=1,b=
3
,A,B,C成等差數(shù)列,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00-10:00 間各自的點(diǎn)擊量,得如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖:
(I)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的極差分別是多少?
(Ⅱ)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?
(Ⅲ)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的中位數(shù)和平均數(shù)分別是多少?由此說明哪個(gè)網(wǎng)站更受歡迎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過點(diǎn)M(1,5),傾斜角是
π
3

①求直線l的參數(shù)方程;
②求直線l與直線x-y-2
3
=0的交點(diǎn)與點(diǎn)M的距離;
③在圓C:(x-2)2+y2=4上找一點(diǎn)Q使點(diǎn)Q到直線l的距離最小,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-ax2
ex
(a∈R),
(1)若a=
1
3
,求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案