已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845726830.png)
(其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845742385.png)
為常數(shù)且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845758390.png)
)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845773335.png)
處取得極值.
(I) 當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845789339.png)
時,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845804451.png)
的單調(diào)區(qū)間;
(II) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845804451.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845836436.png)
上的最大值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845851207.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845882277.png)
的值.
(I)單調(diào)遞增區(qū)間為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845898660.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845898425.png)
單調(diào)遞減區(qū)間為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845914622.png)
(II)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845945531.png)
或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845945399.png)
(I)因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845960837.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845976869.png)
………………2分
因為函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845992817.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846007337.png)
處取得極值
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846023831.png)
………………3分
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846038340.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846038378.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846070874.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846070598.png)
隨
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846101275.png)
的變化情況如下表:
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846319466.png)
的單調(diào)遞增區(qū)間為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846116534.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845898425.png)
單調(diào)遞減區(qū)間為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846148506.png)
………………6分
(II)因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408463821425.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846397560.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846428675.png)
………………7分
因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846444466.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846007337.png)
處取得極值,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846475700.png)
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846491544.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846319466.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846522426.png)
上單調(diào)遞增,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846538402.png)
上單調(diào)遞減
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846444466.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846569454.png)
上的最大值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846584422.png)
,令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846600462.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845945399.png)
………………9分
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846662392.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846678669.png)
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846694497.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846444466.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846740599.png)
上單調(diào)遞增,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846740567.png)
上單調(diào)遞減,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846756425.png)
上單調(diào)遞增
所以最大值1可能在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846787516.png)
或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846787349.png)
處取得
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240408468181741.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846834982.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846850522.png)
………………11分
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846865597.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846444466.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846522426.png)
上單調(diào)遞增,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846959564.png)
上單調(diào)遞減,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846990588.png)
上單調(diào)遞增
所以最大值1可能在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846007337.png)
或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846787349.png)
處取得
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847037944.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846834982.png)
,
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846850522.png)
,與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847099707.png)
矛盾………………12分
當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847115664.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846444466.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846522426.png)
上單調(diào)遞增,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846756425.png)
單調(diào)遞減,
所以最大值1可能在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040846007337.png)
處取得,而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847037944.png)
,矛盾
綜上所述,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845945531.png)
或
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040845945399.png)
. ………………13分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214152649.png)
(1)若曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214183896.png)
在點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214183579.png)
處的切線與直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214214585.png)
平行,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214214278.png)
的值;
(2)求證函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240442142461061.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214261535.png)
上為單調(diào)增函數(shù);
(3)設
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214261337.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214277470.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214324454.png)
,求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044214339894.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(滿分12分)已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042454863880.png)
.
(1)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042454878445.png)
時,求函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042454878495.png)
的單調(diào)區(qū)間;
(2)若函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042454878495.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042454925509.png)
上為減函數(shù),求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042454941283.png)
的取值范圍;
(3)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042454972655.png)
時,不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042455019627.png)
恒成立,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042454941283.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752336893.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752367333.png)
處取得極值,且在點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752383619.png)
處的切線斜率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752398291.png)
.
⑴求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752429493.png)
的單調(diào)增區(qū)間;
⑵若關于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752445275.png)
的方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752461955.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752476517.png)
上恰有兩個不相等的實數(shù)根,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041752492339.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431282803.png)
,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431282404.png)
,
(1)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431297338.png)
時,求曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431329562.png)
在點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431344482.png)
處的切線方程;
(2)討論
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431360447.png)
的單調(diào)性;
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431360447.png)
有兩個極值點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431407300.png)
和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431422331.png)
,記過點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431438916.png)
的直線的斜率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431469312.png)
,問是否存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431485249.png)
,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431500474.png)
?若存在,求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035431485249.png)
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041451999785.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041452015303.png)
上是單調(diào)函數(shù),則實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041452031283.png)
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如果關于x的方程ax+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040809269390.png)
=3在區(qū)間(0,+∞)上有且僅有一個解,那么實數(shù)a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040806508339.png)
x
2-mlnx+(m-1)x,當m≤0時,試討論函數(shù)f(x)的單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)f(x)的定義域是R,f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式e
x·f(x)>e
x+1的解集為( )
A.{x|x>0} | B.{x|x<0} |
C.{x|x<-1或x>1} | D.{x|x<-1或0<x<1} |
查看答案和解析>>