【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0; q:實(shí)數(shù)x滿足<0.

(1)若a=1,且p∨q為真,求實(shí)數(shù)x的取值范圍;

(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

【答案】(1).;(2)

【解析】

(1)先化簡(jiǎn)命題pq,根據(jù)p∨q為真得出p和q的真假情況求出x的取值范圍.(2)根據(jù)p是q的必要不充分條件列出a的不等式,解不等式即得解.

因?yàn)閤2﹣4ax+3a2<0,所以a<x<3a,所以1<x<3.

因?yàn)?/span><0,所以(x-2)(x-4)<0,所以2<x<4.

因?yàn)閜∨q為真,所以p,q中至少有一個(gè)為真,其反面是兩個(gè)都是假命題,

當(dāng)兩個(gè)命題都是假命題時(shí),

所以p,q中至少有一個(gè)為真時(shí),x的范圍為.

(2)因?yàn)?p是q的必要不充分條件,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是⊙O外一點(diǎn),PA是切線,A為切點(diǎn),割線PBC與⊙O相交于點(diǎn)B,C,PC=2PA,D為PC的中點(diǎn),AD的延長(zhǎng)線交⊙O于點(diǎn)E,證明:

(1)BE=EC;
(2)ADDE=2PB2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}各項(xiàng)均為正數(shù),其前n項(xiàng)和為Sn,且滿足4Sn=(an+1)2.

(1){an}的通項(xiàng)公式;

(2)設(shè),數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率是,一個(gè)頂點(diǎn)是

)求橢圓的方程;

)設(shè)是橢圓上異于點(diǎn)的任意兩點(diǎn),且.試問:直線是否恒過一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+lnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)求證:當(dāng)x>1時(shí), x2+lnx<x3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】抽樣得到某次考試中高二年級(jí)某班8名學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)?nèi)缦卤恚?/span>

學(xué)生編號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)成績(jī)x

60

65

70

75

80

85

90

95

物理成績(jī)y

72

77

80

84

88

90

93

95

(1) 求yx的線性回歸直線方程(系數(shù)保留到小數(shù)點(diǎn)后兩位).

(2) 如果某學(xué)生的數(shù)學(xué)成績(jī)?yōu)?3分,預(yù)測(cè)他本次的物理成績(jī).

(參考公式:回歸直線方程為x,其中

,ab.參考數(shù)據(jù):=77.5,

≈84.9,,.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f (x)=(x+1)lnx﹣a (x﹣1)在x=e處的切線與y軸相交于點(diǎn)(0,2﹣e).
(1)求a的值;
(2)函數(shù)f (x)能否在x=1處取得極值?若能取得,求此極值;若不能,請(qǐng)說明理由.
(3)當(dāng)1<x<2時(shí),試比較 大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】太極圖是由黑白兩個(gè)魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對(duì)統(tǒng)一的和諧美,定義:能夠?qū)A的周長(zhǎng)和面積同時(shí)等分成兩個(gè)部分的函數(shù)稱為圓的一個(gè)“太極函數(shù)”,則下列有關(guān)說法中:

①對(duì)于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);

②函數(shù)是圓的一個(gè)太極函數(shù);

③存在圓,使得是圓的一個(gè)太極函數(shù);

④直線所對(duì)應(yīng)的函數(shù)一定是圓的太極函數(shù);

⑤若函數(shù)是圓的太極函數(shù),則

所有正確的是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠BAC=90°.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為 ,求線段AH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案