精英家教網 > 高中數學 > 題目詳情
“一元二次方程ax2+bx+c=0有一個正根和一個負根”是“ac<0”的(  )
分析:根據韋達定理,先判斷出“一元二次方程ax2+bx+c=0有一個正根和一個負根”能推出“ac<0”成立,反之再由韋達定理,判斷出“ac<0”成立能推出“一元二次方程ax2+bx+c=0有一個正根和一個負根”,利用充要條件的有關定義得到結論.
解答:解:若“一元二次方程ax2+bx+c=0有一個正根和一個負根”成立,
由韋達定理可得,x1x2=
c
a
<0,
所以ac<0成立,
反之,若“ac<0”成立,
此時一元二次方程ax2+bx+c=0的△>0,此時方程有兩個不等的根
由韋達定理可得此時x1x2=
c
a
<0,
即方程兩個根的符號相反
即一元二次方程ax2+bx+c=0有一個正根和一個負根
所以“一元二次方程ax2+bx+c=0有一個正根和一個負根”是“ac<0”的充要條件,
故選C
點評:本題考查的知識點是必要條件、充分條件與充要條件的判斷,一元二次方程根的個數與△符號的關系,及韋達定理,其中分別判斷命題A⇒命題B與命題B⇒命題A的真假,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知以下四個命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個實根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2}.
②若
x-1x-2
≤0
,則(x-1)(x-2)≤0.
③“若M={-1,0,1},則x2-2x+m>0的解集是實數集R”的逆否命題.
④若函數f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
其中為真命題的是
 
(填上你認為正確的序號).

查看答案和解析>>

科目:高中數學 來源: 題型:

2、a>0是一元二次方程ax2+2x+1=0,(a≠0)有一個正根和一個負根的
既不充分也不必要
條件.(填條件類型)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c為正數,關于x的一元二次方程ax2+bx+c=0有兩個相等的實數根.則方程(a+1)x2+(b+2)x+c+1=0的實數根的個數是(  )
A、0或1B、1或2C、0或2D、不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

命題A:一元二次方程ax2+bx+c=0有一個正根和一個負根;命題B:ac<0,那么B是A的( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題p:a<1且a≠0,命題q:一元二次方程ax2+2x+1=0(a≠0)至少有一個負的實數根,則p是q的(  )

查看答案和解析>>

同步練習冊答案