15.一工廠生產(chǎn)了某種產(chǎn)品180件,它們來自甲、乙、丙3條生產(chǎn)線,為檢查這批產(chǎn)品的質(zhì)量,決定采用分層抽樣的方法進行抽樣,已知甲、乙、丙三條生產(chǎn)線抽取的個體數(shù)組成一個等差數(shù)列,則乙生產(chǎn)線生產(chǎn)了60件產(chǎn)品.

分析 設甲、乙、丙三條生產(chǎn)線生產(chǎn)的產(chǎn)品件數(shù)分別為x-d,x,x+d,由題意列出方程求得x的值.

解答 解:設甲、乙、丙三條生產(chǎn)線生產(chǎn)的產(chǎn)品數(shù)分別為x-d,x,x+d,
則由題意可得:x-d+x+x+d=180,
解得x=60.
故答案為:60.

點評 本題考查分層抽樣和等差數(shù)列的定義與性質(zhì)的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.斜率為$\frac{1}{2}$且過點(2,2)的直線交拋物線y2=4x于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2sin(A-$\frac{π}{3}$)=$\sqrt{3}$,sin(B-C)=4cosBsinC,則$\frac{c}$等于( 。
A.2$\sqrt{2}$+1B.2$\sqrt{2}$-1C.$\sqrt{6}$+1D.$\sqrt{6}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.“孝敬父母,感恩社會”是中華民族的傳統(tǒng)美德,從出生開始,父母就對我們關心無微不至,其中對我們物質(zhì)幫助是最重要的一個指標,下表是一個統(tǒng)計員在統(tǒng)計《父母為我花了多少》當中使用處理得到下列的數(shù)據(jù):
參考數(shù)據(jù)公式:$\sum_{i=1}^{6}$xiyi=1024.6,$\sum_{i=1}^{6}$xi2=730,$\overline{x}$=9,$\overline{y}$=$\frac{379}{30}$
線性回歸方程:$\widehat{y}$=$\widehat$x+$\widehat{a}$,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$
歲數(shù)x 1 2 612 16 17 
 花費累積y(萬元) 12.8  9 17 22 24
假設花費累積y與歲數(shù)x符合線性相關關系,求:
(1)花費累積y與歲數(shù)x的線性回歸直線方程(系數(shù)保留3位小數(shù));
(2)24歲大學畢業(yè)之后,我們不再花父母的錢,假設你在30歲成家立業(yè)之后,在你50歲之前償還父母為你的花費(不計利總),那么你每月要償還父母約多少元錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如圖所示的三角形數(shù)陣叫“牛頓調(diào)和三角形”,它們是整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為$\frac{1}{n}$(n≥2),每個數(shù)是它下一行左右相鄰兩數(shù)的和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,則第6行第3個數(shù)(從左往右數(shù))為$\frac{1}{60}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在△ABC中,已知a=5,b=5$\sqrt{3}$.C=30°,則角C的對邊c的長為(  )
A.5$\sqrt{13}$B.5$\sqrt{11}$C.5$\sqrt{7}$D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若角α=600°的終邊上有一點(a,-2),則a的值是( 。
A.$-\frac{{2\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$±\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知f(x)=x3-2x,過點(1,m)(m≠2)可作曲線y=f(x)的三條切線,則m的取值范圍為(-2,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果復數(shù)z滿足|z+1-i|=2,那么|z-2+i|的最大值是( 。
A.$\sqrt{13}+2$B.$2+\sqrt{3}i$C.$\sqrt{13}+\sqrt{2}$D.$\sqrt{13}+4$

查看答案和解析>>

同步練習冊答案