已知a>0,且a≠1,數(shù)列{an}的前n項和為Sn,它滿足條件
an-1
Sn
=1-
1
a
.數(shù)列{bn}中,bn=an•lgan
(1)求數(shù)列{bn}的前n項和Tn;
(2)若對一切n∈N*都有bn<bn+1,求a的取值范圍.
分析:(1)由題意知,a1=a,
an-1
Sn
=1-
1
a
轉化為:Sn=
a
a-1
(an-1) ①
Sn-1=
a
a-1
(an-1-1) ②
,①-②,得
an
an-1
=a
,由此能求出數(shù)列{an}的通項公式.
(2)由bn=an•lgan,知bn=nanlga,當對一切n∈N+,都有bn<bn-1,即有nanlga<(n+1)an-1lga,由此進行分類討論,能夠得到a的取值范圍.
解答:解:(1)由題意知,當n=1時,a1=a,
當n≥2時,Sn=
a
a-1
(an-1) ①
,Sn-1=
a
a-1
(an-1-1) ②

①-②,得
an
an-1
=a

∴數(shù)列{an}是等比數(shù)列,
∴an=an(n∈N+).
(2)∵bn=an•lgan,
∴bn=nanlga,
當對一切n∈N+,都有bn<bn-1
即有nanlga<(n+1)an-1lga,
當lga>0,即a>1時,a>
n
n+1
對一切n∈N+都成立,∴a>1.
當lga<0,即0時,有 a<
n
n+1
對一切n∈N+都成立,∴0<a<
1
2

綜上所述a>1或 0<a<
1
2
點評:本題考查數(shù)列的通項公式和數(shù)列與不等式的綜合運用,解題時要認真審題,注意分類討論思想的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a>0,且a≠1,設p:函數(shù)y=loga(x+1)在x∈(0,+∞)內單調遞減;q:函數(shù)y=x2+(2a-3)x+1有兩個不同零點,如果p和q有且只有一個正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知a>0,且a≠1,數(shù)學公式
(1)求f(x)的表達式,并判斷其單調性;
(2 )當f(x)的定義域為(-1,1)時,解關于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒為負值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省杭州市學軍中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

已知a>0,且a≠1,
(1)求f(x)的表達式,并判斷其單調性;
(2 )當f(x)的定義域為(-1,1)時,解關于m的不等式f(1-m)+f(1-m2)<0;
(3)若y=f(x)-4在(-∞,2)上恒為負值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省聊城一中高三模塊測試數(shù)學試卷(理科)(解析版) 題型:解答題

已知a>0,且a≠1,設p:函數(shù)y=loga(x+1)在x∈(0,+∞)內單調遞減;q:函數(shù)y=x2+(2a-3)x+1有兩個不同零點,如果p和q有且只有一個正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省中山一中、深圳市寶安中學高三第二次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

已知a>0,且a≠1,設p:函數(shù)y=loga(x+1)在x∈(0,+∞)內單調遞減;q:函數(shù)y=x2+(2a-3)x+1有兩個不同零點,如果p和q有且只有一個正確,求a的取值范圍.

查看答案和解析>>

同步練習冊答案