在四棱錐AB1中,AB1D1C平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求證:BD⊥平面PAC;
(2)若PA=AB,求PB與AC所成角的余弦值;
(3)若PA=
6
,求證:平面PBC⊥平面PDC.
分析:(1)由四邊形ABCD是菱形,知AC⊥BD,由PA⊥平面ABCD,知PA⊥BD,由此能夠證明BD⊥平面PAC.
(2)過(guò)B作BM∥AC交DA延長(zhǎng)線與M,連接PM,∠PBM或其補(bǔ)角為PB與AC所成角,由此能求出PB與AC所成角的余弦值.
(3)作BH⊥PC,連接HD,由PA⊥平面ABCD,知PB=PD,由CD=CB,PC=PC,知△PBC≌△PDC,由此能夠證明PBC⊥面PDC.
解答:(1)證明:∵四邊形ABCD是菱形,
∴AC⊥BD,
∵PA⊥平面ABCD,
∴PA⊥BD,
∵AC∩PA=A,
∴BD⊥平面PAC.
(2)解:過(guò)B作BM∥AC交DA延長(zhǎng)線與M,
連接PM,∠PBM或其補(bǔ)角為PB與AC所成角,
∵BM∥AC,AM∥BC,
∴四邊形MACB是平行四邊形,
∴BM=AC=2
3
,
PB=PM=2
2

∴cos∠PBM=
6
4

(3)證明:作BH⊥PC,連接HD,
∵PA⊥平面ABCD,
∴PB=PD,
∵CD=CB,PC=PC,
∴△PBC≌△PDC,
∵BH⊥PC,∴HD⊥PC,
∴∠BHD為二面角的平面角,
∵AP=
6
,PB=
10
,PC=3
2
,BC=2,
∴BH=
2

cos∠BHD=0,
∴面PBC⊥面PDC.
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查直線與平面所成角的余弦值的求法,考查平面與平面垂直的證明.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河北區(qū)一模)如圖,在三棱柱BCD-B1C1D1與四棱錐A-BB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,AB=
2
,AD=3,BB1=1.
(1)設(shè)O是線段BD的中點(diǎn),求證:C1O∥平面AB1D1
(2)求直線AB1與平面ADD1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三高考樣卷數(shù)學(xué)文卷 題型:解答題

(本題滿分14分) 如圖,在三棱柱BCDB1C1D1與四棱錐ABB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,AB,AD=3,BB1=1.

(Ⅰ) 設(shè)O是線段BD的中點(diǎn),

求證:C1O∥平面AB1D1;

(Ⅱ) 求直線AB1與平面ADD1所成的角.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三高考樣卷數(shù)學(xué)文卷 題型:解答題

(本題滿分14分) 如圖,在三棱柱BCDB1C1D1與四棱錐ABB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,AB,AD=3,BB1=1.

(Ⅰ) 設(shè)O是線段BD的中點(diǎn),

求證:C1O∥平面AB1D1;

(Ⅱ) 求直線AB1與平面ADD1所成的角.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 如圖,在三棱柱BCDB1C1D1與四棱錐ABB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,ABAD=3,BB1=1.

(Ⅰ) 設(shè)O是線段BD的中點(diǎn),

求證:C1O∥平面AB1D1;

(Ⅱ) 求直線AB1與平面ADD1所成的角.

 


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年天津市河北區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,在三棱柱BCD-B1C1D1與四棱錐A-BB1D1D的組合體中,已知BB1⊥平面BCD,四邊形ABCD是平行四邊形,∠ABC=120°,AB=,AD=3,BB1=1.
(1)設(shè)O是線段BD的中點(diǎn),求證:C1O∥平面AB1D1;
(2)求直線AB1與平面ADD1所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案