設(shè)數(shù)列的前項(xiàng)和.數(shù)列滿足:.
(1)求的通項(xiàng).并比較與的大小;
(2)求證:.
(1) .。
(2)首先我們證明當(dāng)時,
事實(shí)上,記. ∵
由(1)時,. ∴. 而.
∴當(dāng)時,即. 從而.
【解析】
試題分析:(1)由 ① 當(dāng)時,.
當(dāng)時, ② 由①-②有. ∵
∴是2為首項(xiàng),2為公比的等比數(shù)列. 從而.
設(shè)
∵. ∴時, . 當(dāng)時,
又. ∴當(dāng)時,即.
當(dāng)時,顯見
(2)首先我們證明當(dāng)時,
事實(shí)上,記. ∵
由(1)時,. ∴. 而.
∴當(dāng)時,即. 從而.
當(dāng)時,不等式的
左
容易驗(yàn)證當(dāng)時,不等式也顯然成立.
從而對,所證不等式均成立.
考點(diǎn):本題主要考查等差數(shù)列、等比數(shù)列的通項(xiàng)公式,“放縮法”,不等式的證明。
點(diǎn)評:典型題,確定數(shù)列的通項(xiàng)公式,一般地,通過布列方程組,求相關(guān)元素。涉及數(shù)列不等式的證明問題,“放縮、求和、證明”和“數(shù)學(xué)歸納法”等證明方法,能拓寬學(xué)生的視野。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記。
(Ⅰ)求數(shù)列與數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立?若存在,找出一個正整數(shù);若不存在,請說明理由;
(Ⅲ)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分)設(shè)數(shù)列的前項(xiàng)和為,且;數(shù)列為等差數(shù)列,且,.(1)求數(shù)列和的通項(xiàng)公式;
(2)若,為數(shù)列的前項(xiàng)和. 求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009高考真題匯編3-數(shù)列 題型:解答題
(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記。
(Ⅰ)求數(shù)列與數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立?若存在,找出一個正整數(shù);若不存在,請說明理由;
(Ⅲ)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)數(shù)列、滿足,,,.
(1)證明:,();
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省揚(yáng)州中學(xué)09-10學(xué)年高二下學(xué)期期中考試(文科) 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,對一切,點(diǎn)在函數(shù)的圖象上.
(1)求a1,a2,a3值,并求的表達(dá)式;
(2)將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分別計(jì)算各個括號內(nèi)所有項(xiàng)之和,并設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;w*w^w.k&s#5@u.c~o*m
(3)設(shè)為數(shù)列的前項(xiàng)積,是否存在實(shí)數(shù),使得不等式對一切都成立?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com